

Metamodeling

What is Metamodeling? Dimensions on Metamodeling The Information Resource Dictionary Standard (IRDS) Repositories

© 2010 John Mylopoulos

What is Metamodeling?

- "Meta" means literally "after" in Greek.
- Meta-related themes have fascinated people throughout the centuries, e.g., [Hofstadter79] [Gaarder94]
- In Computer Science, the term is used heavily and with several different meanings:
 - ✓ In Databases, metadata means "data about data" and refer to data dictionaries, repositories, etc.;
 - ✓ In Programming Languages, meta-interpreters are interpreters of a (program) interpreter [Smith84];
 - ✓ In Conceptual Modeling, metamodel is a model of a data model, e.g., an E-R model of the relational model, or an ER model of the ER model.

- Data is modelled by metadata ("schemas", "classes",...) which are parts of the metamodel; these units are instances of meta²data which are parts of a metametamodel, etc.
- We'd like to have metamodels which are self-descriptive to an arbitrary level of self-description.

© 2010 John Mylopoulos

© 2010 John Mylopoulos

A program execution operates on data; a meta-execution operates on a program execution,....[Smith84]

© 2010 John Mylopoulos

© 2010 John Mylopoulos

What's Interesting about Metamodeling?

- Ability to talk about any part of another model.
- Self-description, and all the complications that entails ...
- Integration of several models into one metamodel description, leading to inconsistencies.

Requirements on Metamodeling Notations

- Should be capable of describing other conceptual models, e.g., the ER model, or SADT.
- Support facilities for defining primitive concepts, such as entity, activity, goal within the metamodel.
- Offer support for modeling multiple -- possibly contradictory -- perspectives, e.g., Maria at different times, from different viewpoints;
- Support variable granularity descriptions, as with geographic information;
- Support a variety of referential relationships, such as defines, denotes, mentions, includes, etc.

DI TRENTO

... Not a new Idea ...

```
→The Backus-Naur Form (BNF) is a language for defining the syntax of other languages (through a grammar).
→For example
✓A simple grammar: NP ::= Noun | Adj NP
```

```
N ::= person | tree
```

```
Adj ::= tall | old | young
```

```
✓A grammar for BNF:
```

```
BNF ::= BNF-Rule | BNF-Rule BNF
```

```
BNF-Rule ::= LHS '::=' RHS
```

```
LHS ::= Non-Terminal
```

```
RHS ::= Symbol | Symbol RHS | RHS '|' RHS
```

```
Symbol ::= Terminal | Non-Terminal
```


SADT ODIAGRAM FORM ST098 9/75 Form # 1975 SolTech, Inc., 460 Totten Pond Road, Waltham, Mass. 02154, USA

Fig. 3. Rationalize SA features.

© 2010 John Mylopoulos

The EER Metamodel as an EER

© 2010 John Mylopoulos

Instantiating the EER Metamodel

© 2010 John Mylopoulos

IRDS - Information Resource Dictionary Standard

- Data dictionary standard, since 1988 (ANSI X3.138)
- Technology-independent standard, akin to ER model.
- Proposes 4 different levels of data:
 - ✓ Bottom level -- application data, e.g., software code;
 - Level 2 -- data dictionary for application data, e.g., procedures, variables, data types, etc.
 - ✓ Level 3 -- schema for the data dictionary, e.g., what is a procedure (in the programming language the code is written in), what is a variable,...
 - Level 4 -- different types of IRDS schemas, e.g., programming language schemas vs requirements modeling ones.

© 2010 John Mylopoulos

© 2010 John Mylopoulos

Metadata in SQL

- A relational catalogue contains the data dictionary, i.e., a description of the relational schema D of the database.
- It is based on a relational schema MD whose relations describe the relations, columns, domains in D but also MD (reflectivity).
- The SQL-2 standard describes a Definition_Schema (composed of tables) and an Information_Schema (composed of views).

<u>Rel</u>	<u>Attr</u>	Dom	Default
Employee	name	String	null

© 2010 John Mylopoulos

© 2010 John Mylopoulos

OMG's Meta Object Facility - MOF

- Unlike programming languages, a lot of modeling languages are not textual – so we use a different meta-language instead of BNF, called the MOF
- MOF is an OMG standard for modeling languages
 - It is a kind of model of metamodels (a meta-metamodel)
 - \checkmark UML infrastructure, UML superstructure, the OCL, relational database models, specializations of UML (i.e., almost everything) can all be represented within the MOF
 - Modelling concepts are defined as "metaclasses"
 - Metaclasses themselves are instance objects of MOF classes
- The MOF involves a 4-layer architecture too.

UNIVERSITÀ DEGLI STUDI

Dept of Information Engineering and Computer Science

Layers MO and M1

 \rightarrow You are familiar with MO and M1 \rightarrow Layer MO defines an actual system ✓Instances and/or executing instances ✓E.g., component instances, customer objects, representing actual customers accessing an e-Commerce system \rightarrow Layer M1 is a system model \checkmark Defines the types of entities and relationships that make up a system \checkmark E.g., component specifications, UML class model defining a Customer class \rightarrow Every element of MO is an instance

of an element from M1

© 2010 John Mylopoulos

Layer M2

→ Language used to make models in M1 defined by a model in M2.
→ M1 models instances at M0, M2 models concepts at M1
→ For example Class, Association, Component are defined as M2 classes
→ Every element of M1 is an instance of M2

Layer M3

→ Layer M3 defines the model
of metamodels in M2 - the
meta-metamodel
→ These concepts are defined

through class definitions (metametaclasses)

→ The metaclasses of M2 are themselves instances of M3 classes

→ The OMG standard for defining M3 models is the MOF
- M3 classes are called MOF classes.

Why All These Layers?

→The usefulness of MO and M1 should be clear - writing good models is essential to sound software development
→M2 is important so we can define modelling languages
✓As we have seen, it is important to define different modelling languages for different contexts
✓E.g., a modelling language for architectures COM+ architectures
→M3 is important to manipulate and transform models.

(Part of) UML 2.0 Class Metamodel

© 2010 John Mylopoulos

- A (data) repository stores and manages information about one or more data sources.
- A repository system consists of a conceptual model (often akin to ER model), a model base (information/data/ knowledge base, operations for doing retrievals, updates, check-in/check-out, etc.
- There are many commercial repository products,
 - ✓ Many are hard-coded meta-models (commodity tools)
 - ✓ Most run on RDBMSs (Platinum, SAP, Oracle, MS, ...)
 - ✓ Some based on proprietary DBMS (Softlab, Viasoft)
 - ✓ A few run on OODBs (IBM, Unisys)

Repositories as Metadata Managers

© 2010 John Mylopoulos

UNIVERSITÀ DEGLI STUDI DI TRENTO

Dept of Information Engineering and Computer Science

© 2010 John Mylopoulos

- [Bernstein99] Bernstein, P., "Using Meta-Data to Conquer Database Complexity", Colloquium presentation, University of Toronto, October 1999; http://www.research.microsoft.com/~philbe.
- [Gaarder94] Gaarder, J., Sophie's World, Farrar, Straus and Giroux Inc., 1994.
- [Hofstadter79] Hofstadter, D., Godel, Escher, Bach: An Eternal Golden Braid, Vintage Books, 1979.
- [Smith84] Smith, B. C., "Reflection and the Semantics of Lisp", Proceedings of the Eleventh Annual Conference on Principles of Programming Languages (POPL), Salt Lake City, 23-35, 1984.