1 1^o Θέμα

1.1 Πρώτη προσέγγιση

Παρατηρούμε οτι το άθροισμα όλων παλμών των 8 καταστάσεων είναι $\sum_{i=1}^8 2^{i-1}$ ή 255. Μια πιθανή λύση του προβλήματος είναι να χρησιμοποιήσουμε ένα 8μπιτο μετρητή και να κατασκευάσουμε ένα συνδυαστικό κύκλωμα το οποίο να δέχεται την έξοδο του αθροιστή και να δίνει το ζητούμενο.

Μετρητής	Έξοδος
00000000	-
00000001	000
0000001x	001
000001xx	010
00001xxx	011
0001xxxx	100
001xxxxx	101
01xxxxxx	110
1xxxxxxxx	111

Η μηδενική κατάσταση του μετρητή δεν είναι έγκυρη, οπότε θέλουμε να μετράει απο το 1 ως το 255. Αν χρησιμοποιήσουμε μετρητή με σύγχρονη παράλληλη φόρτωση, τότε όταν αυτός είναι στην τιμή 255, του φορτώνουμε την τιμή 1.

Αν οι έξοδοι του συνδυαστικού είναι o_0, o_1, o_2 και οι έξοδοι του μετρητή είναι c_0, c_1, \ldots, c_7 τότε θα έχουμε:

$$\begin{aligned} o_2 &= c_7 + \overline{c_7} \, c_6 + \overline{c_7} \, \overline{c_6} \, c_5 + \overline{c_7} \, \overline{c_6} \, \overline{c_5} \, c_4 \\ &= c_7 + c_6 + \overline{c_6} \, c_5 + \overline{c_6} \, \overline{c_5} \, c_4 \\ &= c_7 + c_6 + c_5 + \overline{c_5} + c_4 \\ &= c_7 + c_6 + c_5 + c_4 \end{aligned}$$

$$o_{1} = c_{7} + \overline{c_{7}}c_{6} + \overline{c_{7}}\overline{c_{6}}\overline{c_{5}}\overline{c_{4}}c_{3} + \overline{c_{7}}\overline{c_{6}}\overline{c_{5}}\overline{c_{4}}\overline{c_{3}}c_{2}$$

$$= c_{7} + c_{6} + \overline{c_{6}}\overline{c_{5}}\overline{c_{4}}c_{3} + \overline{c_{6}}\overline{c_{5}}\overline{c_{4}}\overline{c_{3}}c_{2}$$

$$= c_{7} + c_{6} + \overline{c_{5}}\overline{c_{4}}c_{3} + \overline{c_{5}}\overline{c_{4}}\overline{c_{3}}c_{2}$$

$$= c_{7} + c_{6} + \overline{c_{5}}\overline{c_{4}}(c_{3} + \overline{c_{3}}c_{2})$$

$$= c_{7} + c_{6} + \overline{c_{5}}\overline{c_{4}}(c_{3} + c_{2})$$

$$\begin{aligned} o_0 &= c_7 + \overline{c_7} \, \overline{c_6} c_5 + \overline{c_7} \, \overline{c_6} \, \overline{c_5} \, \overline{c_4} c_3 + \overline{c_7} \, \overline{c_6} \, \overline{c_5} \, \overline{c_4} \, \overline{c_3} \, \overline{c_2} c_1 \\ &= c_7 + \overline{c_6} c_5 + \overline{c_6} \, \overline{c_5} \, \overline{c_4} c_3 + \overline{c_6} \, \overline{c_5} \, \overline{c_4} \, \overline{c_3} \, \overline{c_2} c_1 \\ &= c_7 + \overline{c_6} \left(c_5 + \overline{c_5} \, \overline{c_4} c_3 + \overline{c_5} \, \overline{c_4} \, \overline{c_3} \, \overline{c_2} c_1 \right) \\ &= c_7 + \overline{c_6} \left(c_5 + \overline{c_4} (c_3 + \overline{c_3} \, \overline{c_2} c_1 \right) \\ &= c_7 + \overline{c_6} \left(c_5 + \overline{c_4} \left(c_3 + \overline{c_3} \, \overline{c_2} c_1 \right) \right) \\ &= c_7 + \overline{c_6} \left(c_5 + \overline{c_4} \left(c_3 + \overline{c_2} c_1 \right) \right) \end{aligned}$$

1.2 Δεύτερη προσέγγιση

Είναι αποδεκτό να δίνονται οι 8 ζητούμενες καταστάσεις ξεχωριστά. Στην περίπτωση αυτή το συνδυαστικό κύκλωμα απλοποιείται αρκετά και δίνεται απο τις παρακάτω εκφράσεις:

$$\begin{aligned} o_0 &= c_0 \overline{c_1} \, \overline{c_2} \, \overline{c_3} \, \overline{c_4} \, \overline{c_5} \, \overline{c_6} \, \overline{c_7} \\ o_1 &= c_1 \overline{c_2} \, \overline{c_3} \, \overline{c_4} \, \overline{c_5} \, \overline{c_6} \, \overline{c_7} \\ o_2 &= c_2 \overline{c_3} \, \overline{c_4} \, \overline{c_5} \, \overline{c_6} \, \overline{c_7} \\ o_3 &= c_3 \overline{c_4} \, \overline{c_5} \, \overline{c_6} \, \overline{c_7} \\ o_4 &= c_4 \overline{c_5} \, \overline{c_6} \, \overline{c_7} \\ o_5 &= c_5 \overline{c_6} \, \overline{c_7} \\ o_6 &= c_6 \overline{c_7} \\ o_7 &= c_7 \end{aligned}$$

1.3 Μια υλοποίηση

