
Overlapping Computation and Communication in SMT Clusters

with Commodity Interconnects

Georgios Goumas, Nikos Anastopoulos, Nectarios Koziris

National Technical University of Athens

School of Electrical and Computer Engineering

Athens, Greece

HiPEAC Members

Email: {goumas,anastop,nkoziris}@cslab.ece.ntua.gr

Nikolas Ioannou

University of Edinburgh

School of Informatics

Edinburgh, United Kingdom

HiPEAC Member

Email: nikolas.ioannou@ed.ac.uk

Abstract—In this paper we focus on optimizing the perfor-
mance in a cluster of Simultaneous Multithreading (SMT)
processors connected with a commodity interconnect (e.g.
Gbit Ethernet), by applying overlapping of computation with
communication. As a test case we consider the parallelized
advection equation and discuss the steps that need to be
followed to semantically allow overlapping to occur. We propose
an implementation based on the concept of Helper Threading
that distributes computation and communication in the two
sibling threads of an SMT processor, thus creating an asym-
metric pair of execution patterns in each hardware context.
Our experimental results in an 8-node cluster interconnected
with commodity Gbit Ethernet demonstrate that the proposed
implementation is able to achieve substantial performance
improvements that can exceed 20% in some cases, by efficiently
utilizing the available resources of the SMT processors.

Keywords-SMT architecture; overlapping;

I. INTRODUCTION

Simultaneous multithreading (SMT) [1] provides a

promising strategy to increase the throughput of conven-

tional superscalar processors by multiplexing the execution

of concurrent threads. It performs a sparing duplication

or expansion of certain processor functional units (e.g.

processor architecture state), thus targeting noteworthy per-

formance improvement at minimal additional construction

cost. Depending on the architectural design, the processor’s

functional units may be duplicated, dynamically shared

or statically partitioned. The main goal is to fill up the

frequent empty issue slots that are due to low Instruction

Level Parallelism (ILP) or long-latency events such as cache

misses and branch mispredictions, with operations executed

by an alternative thread. Unfortunately, SMTs suffer from

contention for the common resources. In fact SMTs have

been shown to be beneficial only for threads that utilize

different functional resources, e.g. server applications.

Attaining performance for a single application running

on an SMT processor is quite an intricate task. Traditional

parallelization approaches that lead to the construction of

identical threads operating on partitioned data do not seem

promising, since in this case threads will compete for

the same functional units. Yet, if the sequential code is

unoptimized in terms of memory access, then one can expect

an efficient multiplexing of executing threads that will fill

the numerous cache-miss stalls. In general, however, Thread-

Level Parallelism (TLP) is not as suitable for SMTs as for

general Symmetric Multiprocessing (SMP) architectures as

experimentally verified in [2]. For this reason researchers

have tried to utilize hardware threads of a single application

in an asymmetric fashion (e.g. [3], [4]), frequently named

Helper Threading. In the practical case of an SMT with two

hardware threads, Helper Threading dictates that the second

thread should perform some useful but different work from

the main computation thread. The most interesting example

of Helper Threading is Speculative Precomputation [5], [6],

in which the helper thread precomputes memory accesses

on behalf of the main computation thread, attacking in this

way possible bottlenecks due to memory latency [7], [8].

Overlapping computation and communication is an im-

portant optimization for message-passing applications. This

capability is a key characteristic of modern, high-speed

interconnects like Inifiniband [9], Myrinet [10] and Quadrics

[11], [12]. Software implementations that incorporate this

feature always assume such an underlying interconnect [13]–

[15], which is able to offload communication operations

from the main CPU to the intelligent logic of the NIC. The

main ambition of this paper is to relax this assumption by

enabling the operation of this execution model even over a

commodity interconnection network. Instead of overlapping

computation and communication in the interconnection, we

opt for a much simpler and cost efficient solution, where we

do so by correctly splitting our program and using existing

SMTs. More specifically, we re-formulate the problem so

as to split it in two threads, the computation one and the

communication one, both of which run concurrently on the

SMT. The key intuition here is that since the two threads

utilize different resources, they generally do not interfere

with each other, resulting in an efficient execution of both.

Unfortunately, the primary step in accomplishing overlap

between computation and communication involves careful

re-engineering of the application. The main aspect is how to

design the two threads such that they execute concurrently

while respecting the inter-thread dependences [13]–[15].

In subsequent sections we show the rationale behind the

required re-engineering and apply it to a stencil computation

arising from the discretization of the advection partial differ-

ential equation (PDE). We discuss linear scheduling for this

family of computations and select a proper linear scheduling

vector that theoretically allows overlap of computation and

communication. Since our interconnection network does not

support overlapping, we need to assign these two tasks to

the two available threads of an SMT processor, and properly

synchronize them. This task distribution creates two sub-

stantially asymmetric threads, the one performing floating

point computations and the other performing memory copies

and communication operations. Thus we expect this scheme

to provide an efficient utilization of the SMT processor

resources. Indeed, our experimental results demonstrate that

the proposed implementation makes a very efficient use of

our platform resources and can provide a non-negligible

performance improvement exceeding 20%.

The rest of the paper is organized as follows: the next

section provides background knowledge, while Section III

discusses the overlapping linear schedule used in the pro-

posed implementation of advection PDE proposed in Sec-

tion IV. In Section V we present experimental results that

compare the performance of various implementations, while

in Section VI we discuss previous, related work. Finally, this

paper concludes in Section VII.

II. BACKGROUND

A. Basic concepts of SMT architecture

SMT allows a conventional dynamic, superscalar proces-

sor to issue instructions from multiple independent threads

in a single cycle. The key motivation in this technique comes

from the observation that in single-thread execution of many

applications, a considerable portion of the processor’s issue

bandwidth remains unutilized. This is due to the insufficient

ILP inherent in many applications that leaves multiple issue

slots unused in each cycle, or due to long latency operations,

such as cache misses and branch mispredictions, that stall the

entire pipeline and leave all issue slots unused for successive

cycles. In either case, instructions from alternative threads

can be scheduled, filling up empty issue slots. In essence, by

fetching instructions from additional threads the SMT logic

provides the out-of-order engine with a window containing

many more non-dependent instructions, which increases

the scheduling opportunities of the engine and maximizes

resource utilization. Note that after the renaming stage, the

out-of-order engine of the SMT processor is oblivious to

logical processor distinctions. Therefore, with SMT, thread

level parallelism is effectively converted to instruction level

parallelism.

The additional hardware needed to provide a conventional

processor with SMT capabilities is minimal. For example,

in the first implementations of Intel’s Hyper-threaded pro-

cessors it accounted for less than 5% of the total chip area.

Only those structures necessary to track independently each

logical processor’s execution are replicated, most important

being the program counters and register mapping tables

(i.e. the architectural state). All other resources are either

statically partitioned (e.g. intermediate micro-op queues,

load/store buffers, the reorder buffer in Hyper-threaded pro-

cessors), or dynamically shared (e.g. execution units, caches,

branch predictor, control logic and buses). For this reason, it

is argued that mutual exclusion in the use of these resources

is an important requirement for achieving high multithreaded

performance. Threads with heterogeneous instruction mixes

and complementary resource needs (e.g., memory-intensive

vs. computation-intensive, fp-bound vs. integer-bound, etc.)

may coexist well under simultaneous execution. On the other

hand, threads with symmetric profiles tend to compete for

the same execution units in each cycle. This creates conflicts,

pipeline stalls, and finally performance degradation.

B. Algorithmic model and advection equation

Our algorithmic model concerns applications that involve

(n + 1)-dimensional perfectly nested loops with constant

dependences. The iteration space Jn+1 is rectangular, thus

it holds Jn+1 = {~j(j1, j2, . . . , jn+1) ∈ Zn+1∧; li ≤
ji ≤ ui, ; i = 1 . . . n + 1}, where li, ui ∈ Z are the

lower and upper bounds of the i-th loop respectively. The

dependences of the problem are expressed with constant,

(n+1)-dimensional dependence vectors ~di, i = 1 . . .m. We

denote ~dij the j-th element of vector ~di. In the class of

problems under consideration it holds ~dij ≥ 0, i = 1 . . .m
and j = 1 . . . n + 1. The dependence matrix of the algo-

rithm, denoted D, is an (n + 1) ×m matrix containing as

columns the dependence vectors of the algorithm. Overall,

the algorithms have the general form of Algorithm 1, where

U is an (n+1)-dimensional array and F is a linear function.

Algorithm 1 algorithmic model

1: for j1 ← l1 to u1 do

2: . . .

3: for jn ← ln to un do

4: for jn+1 ← ln+1 to un+1 do

5: U [~j] = F (U [~j − ~d1], . . . , U [~j − ~dm]);
6: end for

7: end for

8: . . .

9: end for

Discretization of the advection equation leads to an ap-

plication following our algorithmic model. Advection is the

physical process of transportation within a fluid described

by the PDE ∂v
∂t

= ~a ▽ v where v is particle density or

temperature and ~a is the vector field, e.g. the velocity vector

of the material. In one spatial dimension the above equation

is equivalent to:

∂v

∂t
= a

∂v

∂x
(1)

If we need to study an advection process in a space with

length X for a time window T , we can discretize the initial

domain into a uniform grid using a time step ∆t and a space

step ∆x. Then, we can discretize the above PDE using a

variety of finite differencing schemes. For example, if we

employ the Euler-Forward scheme [16], the time derivative

can be substituted by a fraction of differences as follows:
∂v
∂t

=
v

n+1

i
−vn

i

∆t
. The physics of the problem allows us to em-

ploy upwind [16] differencing schemes for the space deriva-

tive, which involves computations with “previous” spatial

grid points. Thus, in this case we can substitute the space

partial derivative as follows: ∂v
∂x

=
vn

i
−vn

i−1

∆x
. If we substitute

to Equation (1) we get vn+1
i =

(

1 + a ∆t
∆x

)

vn
i − a ∆t

∆x
vn

i−1.

If we exploit the serial traversal of the above equation, we

can utilize previous spatial elements computed at the current

time step as shown in the following equation:

vn+1
i =

(

1 + a
∆t

∆x

)

vn
i − a

∆t

∆x
vn+1

i−1 (2)

Note that v0
i and vn

0 are known from the initial and boundary

values of the PDE problem. Equation (2) can be easily

solved for all points in the discretized computational grid

T ′ × X ′ where T ′ = T/ ∆t and X ′ = X/∆x with the

nested loop shown in Algorithm 2.

Algorithm 2 nested loop for 1-D advection equation

for j1 ← 0 to T ′ do

for j2 ← 1 to X ′ do

U [j1 +1][j2] = (1+a ·dt/dx) ·U [j1][j2]−a ·dt/dx ·
U [j1 + 1][j2 − 1];

end for

end for

The dependence matrix of the above algorithm is D =
[

1 0
0 1

]

. The discretization process followed leads to

nonnegative elements in the dependence matrix.

C. Tiling, scheduling and mapping

The algorithmic dependences of the applications under

consideration enable us to apply rectangular tiling [17], [18]

in order to tune the granularity of communication. As far

as the scheduling of tiles is concerned, we apply linear

scheduling techniques [19]. Central to linear scheduling is

the notion of the scheduling vector Π. Intuitively, in our

class of applications, it suffices to calculate the inner product

of a point ~j ∈ Jn+1 with Π to derive the parallel time

step at which ~j will be executed. Π is legal iff Π~di > 0,

� � �� � � � � �� � � � ��� � 	 	
 � �� � � �� ��� � 	 �
�� � �� �
 � � � �
 ��� � � �� � �
 � � � �
 ���� �� �� � � � � �� �� �
� �� �� �� � � �

(a) Non-overlapping ! " # $ % & '() * # ! +, - . / 01 23 4
5 65 75 8

9 :
9 ;

(b) Overlapping

Figure 1: Linear schedules for a 2-dimensional iteration

space (1-D advection).

i = 1 . . .m. The most efficient scheduling vector is the one

that minimizes the total parallel execution time, i.e. the one

that minimizes the execution time of the lexicographically

largest point of the iteration space.

All points (or tiles) that lie within each n-dimensional

surface perpendicular to the scheduling vector Π can execute

in parallel, thus, one can employ an n-dimensional array

of processes to maximize parallelism [20]. In our approach

we will also consider the general case of an n-dimensional

process grid to execute in parallel (n + 1)-dimensional

iteration (or tiled) spaces.

III. OVERLAPPING VS. NON-OVERLAPPING LINEAR

SCHEDULING

The first step to achieve computation and communication

overlap is to re-engineer the application. If the most efficient

in terms of minimal parallel steps is employed, then com-

putation/communication overlapping is not possible. This is

so because the data dependences force each processor to

perform sequentially the following steps: wait for the com-

munication data, perform computations on the data received

and send computed data to its neighbors. This is depicted

for the 2-dimensional iteration space in Figure 1a, which

corresponds to the 1-D advection equation. The rectangles

representing computation can be either single iteration points

< = > ? @ A B A C= DC D CA CB A EF E < E CG E H B CAF E < E CG E @ D ? B < I ? B < I CD CA CB A EJ E D K H B C AJ E D KL M N O P Q R Q SM T Q U V W R X < = > ? @ A B A C= DC D CA CB A EF E < E CG E H B CAF E < E CG E @ D ? B < I ? B < I CD CA CB A EJ E D K H B C AJ E D KL M N O P Q R Q SM T Q U V W R X
Figure 2: Non-overlapping implementation for parallel advection with two symmetric threads.

or tiles. In this case we employ a 1-dimensional processor

array and all computations along the first dimension are

mapped to the same processor. The straightforward linear

schedule for the dependences of our problem that minimizes

the total parallel execution steps [19] is Π = [1, 1] (Π =
[1, 1, . . . , 1] in general). However, note from Figure 1a that

in this case each processor needs to wait for communication

data from its predecessor, then perform computations and

finally forward the newly computed data to its successor.

The execution proceeds in distinct parallel phases of com-

putations and communications. This clearly, does not allow

for any communication to computation overlap.

However, as shown in [21], one can encapsulate both

communication and computation in each step at the cost

of theoretically increasing the total number of parallel

execution steps. This can be achieved in terms of linear

scheduling by the use of a vector Π = [2, 2, . . .1, . . . 2, 2],
where we apply 1 only along the mapping dimension (the

dimension along which all computation is assigned to the

same processor). This overlapping schedule is depicted in

Figure 1b for a 2-dimensional space. In this case each

processor is able to concurrently do the following: perform

computations for the current time step, send data computed

at the previous time step and receive data that will be used

during the next time step. The total number of parallel time

steps is indeed increased but each step in this case involves

both computation and communication (all computations and

communications cut by the same parallel plane can be

executed in parallel). This theoretical overlapping is realistic

only when the underlying platform enables communication

to be offloaded from the main CPU.

IV. IMPLEMENTATION DETAILS

In this section we provide implementation details for the

proposed overlapping scheme. Our execution platform is a

cluster of SMT nodes, with each SMT having two hardware

threads. The underlying interconnection does not provide

overlapping capabilities, e.g. it is a commodity Gbit Ether-

net. Algorithm 3 presents the pseudocode of the standard,

non-overlapping 1-D advection using MPI primitives. The

general form of the code remains conceptually the same

for the more interesting 2-D (3-D) cases, with the only

difference that in these cases a central MPI process needs

to reveive from 2 (3) and send to 2 (3) neighbors. To

utilize all available hardware threads of the platform, one can

assign two symmetric threads in the SMT of each node, as

Algorithm 3 Code snippet for non-overlapping 1-D advec-

tion

1: while steps < K do

2: MPI Irecv(down,...); {init receive from downward

neighbor}
3: MPI Wait(...); {wait receive completion}
4: UnpackData(steps); {unpack data for current step}
5: Compute(steps); {computations of current step}
6: PackData(steps); {pack data of current step}
7: MPI Isend(up,...); {init send to upward neighbor}
8: MPI Wait(...); {wait send completion}
9: steps++;

10: end while

Algorithm 4 Code snippet for overlapping 1-D advection

with symmetric threads

1: while steps < K do

2: MPI Irecv(down,...); {init receive from downward

neighbor}
3: MPI Isend(up,...); {init send to upward neighbor}
4: Compute(steps); {computations of current step}
5: MPI Waitall(...); {wait communication completion}
6: UnpackData(steps+1); {unpack data for next step}
7: PackData(steps); {pack data for next step’s send}

steps++;

8: end while

shown in Figure 2, where it is clear that communication and

computation is performed in distinct non-overlapped phases.

The second implementation we consider is that of the

straightforward overlapping scheme. The pseudocode is

shown in Algorithm 4. In this case the communication is

initiated before the computations and is performed in an

overlapped fashion with them, under the assumption that the

interconnection network is able to offload communication

operations (e.g. memory copies, OS traps, communication

protocol, polling etc.) from the main CPU (e.g. [22]). This

execution pattern is also demonstrated in Figure 3. The

steps of computation and communication in this case are

multiplexed, since receptions are performed for data to be

used in the next step, and sends are performed for data

calculated in the previous step.

In our case the communication network does not support

overlapping, but we can distribute computation and com-

munication between the two threads of an SMT processor,

Y Z [\] ^ _ ^ `Z a` a `^ `_ ^ bc b Y b `d b] a \ _ Y e\ _ Y e` a `^ ` _ ^ bf b a gh i j k l m n m oi p m q r s n t u _ `^ f b a g vc b Y b `d bY Z [\] ^ _ ^ `Z a` a `^ `_ ^ bc b Y b `d b] a \ _ Y e\ _ Y e` a `^ ` _ ^ bf b a gh i j k l m n m oi p m q r s n t u _ `^ f b a g vc b Y b `d b
Figure 3: Overlapping implementation for parallel advection with symmetric threads.w x y z { | } | ~x �� � � � � � � � �� � � � �� � � ~� ~| ~} | �� � � � � } ~| � � � � �� � w � ~� � � } ~ | ~ �� } � � ~� �� � � � � � �� � � �� � � � �� � � { � z } w �z } w �� } ~| ~ � � } � � ~� �� � � w { | �� } � � ~� � � � � w { | �� } � � ~� �� � � w { | �� } � � ~� �� } � � ~ � � � } � � ~� �~ � ~ | ~} | �� � w � ~� � � � � w { | �� } � � ~� �
Figure 4: Overlapping implementation for parallel advection with asymmetric threads.

Algorithm 5 Code snippet for overlapping 1-D advection

with asymmetric threads

1: {computation thread}
2: while steps < K do

3: Compute(steps); {computations of current step}
4: barrier(); {synchronize after end of computation}
5: barrier(); {synchronize after end of communication}
6: steps++;

7: end while

8: {communication thread}
9: while steps < K do

10: MPI Irecv(down,...); {initiate receive from downward

neighbor}
11: MPI Isend(up,...); {initiate send to upward neighbor}
12: MPI Waitall(...); {wait communications completion}
13: barrier(); {synchronize after end of computation}
14: UnpackData(steps+1); {unpack data for next step}
15: PackData(steps); {pack data for next step’s send}
16: barrier(); {synchronize after end of communication}
17: steps++;

18: end while

as shown in Algorithm 5 and Figure 4. The computation

thread undertakes only the floating-point operations while all

the communication tasks (packing/unpacking, MPI function

calls) are offloaded to the communication thread. Additional

synchronization primitives (e.g. barriers) are also required

to correctly orchestrate the execution of the two threads

and preserve the semantics of the algorithm. In particular,

the computation thread needs to signal the end of the

computations in each step, while the communication thread

signals the end of data packing and unpacking, to proceed

to the next execution step.

V. EXPERIMENTS

In this section we evaluate the efficiency of the three par-

allel implementations of the advection equation discusssed in

Section IV in a cluster of SMT processors. The versions we

consider are: the standard, non-overlapping (STD) shown in

Algorithm 3 and Figure 2, the overlapping with symmetrical

threads (OVRLP) shown in Algorithm 4 and Figure 3,

and the proposed overlapping with asymmetrical threads

(ASYM) shown in Algorithm 5 and Figure 4.

A. Experimental setup

Our execution platform is an 8-node cluster of SMT

processors (xenon1–xenon8). Each node contains two Intel

Xeon processors running at 2.8GHz, with 2GB of main

memory and 1MB L2 cache. The processors are enabled

with HT technology, that makes a single physical processor

appear as two logical processors by applying a two-threaded

SMT approach. The OS (Linux with 2.6 kernel) identifies

two different logical processors, each maintaining a separate

run queue. Thus, in total the platform has up to 32 logical

processors. The nodes are interconnected with commodity

Gbit Ethernet adapters over a single 24-port switch.

We have implemented the two-dimensional (2-D) and

three-dimensional (3-D) advection equation and parallelized

them using MPICH version 1.2.7. We tune the granularity of

communication with tiling and tested several candidate tile

sizes. In the 2-D (3-D) case, we applied a two-dimensional

(three-dimensional) process topology. Since, as shown in

[23], the number of processes in each dimension of the

process topology also affects the communication overheads,

we experimented with all possible process topologies. In

each case we report the best performance attained. Double

precision arithmetic is applied.

In the case of STD and OVRLP we assigned all even

numbers of MPI processes between 2 and 32 in a cyclic

fashion, i.e. we first fill all cluster nodes with one thread,

then assign a second thread to the second SMT processor of

the node, and finally start to involve HT in the execution.

For example, 20 threads (MPI processes) are running in our

cluster in the following way: xenon1–xenon4 are assigned

3 MPI processes each, with one processor fully utilizing

its hardware threads, while xenon4–xenon8 are assigned 2

MPI processes allocated to the two separate packages of the

nodes. From that point, adding couples of MPI processes

starts involving HT in two additional nodes. In the case of

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Number of threads

STD
STD-COMP

OVRLP
OVRLP-COMP

ASYM
ASYM-COMP

(a) Iteration space: 1024×1024

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Number of threads

STD
STD-COMP

OVRLP
OVRLP-COMP

ASYM
ASYM-COMP

(b) Iteration space: 2048×2048

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Number of threads

STD
STD-COMP

OVRLP
OVRLP-COMP

ASYM
ASYM-COMP

(c) Iteration space: 3072×3072

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Number of threads

STD
STD-COMP

OVRLP
OVRLP-COMP

ASYM
ASYM-COMP

(d) Iteration space: 4096×4096

Figure 5: Overall parallel execution time for the three versions of 2-D advection: standard, non-overlapping (STD),

overlapping with symmetric threads (OVRLP) and overlapping with asymmetric threads (ASYM). The relevant execution

time in each case is also demonstrated (*-COMP).

ASYM we use POSIX threads to spawn one computation

and one communication thread for each MPI process, assign

these threads to the same package and use the primitives

provided by the Pthreads library to properly synchronize

them. Thus, in this case we need 16 MPI processes to fill

the execution platform with 32 threads.

B. Results for 2-D advection

Figure 5 shows the experimental results (overall parallel

execution time and computation time) of 2-D advection

for the parallel implementations under consideration in four

iteration spaces. In all experiments the third dimension of

the iteration space (number of parallel execution steps for

the untiled version) was set to 256. Several interesting

observations can be made. At first we can see that the

STD and OVRLP implementations have similar performance

behavior. This verifies that although OVRLP conceptually

implements overlapping, the underlying hardware is not

capable of hiding any part of the communication overhead.

On the other hand, the overlapping schedule presented in

Section III does not cause any performance overheads,

thus it leads to a viable implementation, regardless of the

underlying communication hardware.

Both implementations (STD and OVRLP) exhibit good

scalability until 16 threads. Beyond that number of threads,

nodes start to involve HT which clearly seems to have

a negative impact on performance. This is expected since

both implementations have symmetric threads competing

for the same functional units of the SMT processor (see

Section II-A). The proposed ASYM implementation scales

well until 32 threads. As expected, for smaller number of

threads the performance of ASYM is worse than that of

STD and OVRLP, since in this case ASYM does not use

all the potential of the underlying platform. For example, in

16 threads STD and OVRLP utilize all 16 processors of the

cluster, while ASYM uses only 8. Beyond 16 threads, the

three implementations start to converge with ASYM finally

outperforming the other two when all 32 logical processors

of the cluster are involved.

Overall, all three implementations have a similar record in

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Number of threads

STD
STD-COMP

OVRLP
OVRLP-COMP

ASYM
ASYM-COMP

(a) Iteration space: 128×128×128

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Number of threads

STD
STD-COMP

OVRLP
OVRLP-COMP

ASYM
ASYM-COMP

(b) Iteration space: 192×192×192

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Number of threads

STD
STD-COMP

OVRLP
OVRLP-COMP

ASYM
ASYM-COMP

(c) Iteration space: 256×256×256

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Number of threads

STD
STD-COMP

OVRLP
OVRLP-COMP

ASYM
ASYM-COMP

(d) Iteration space: 320×320×320

Figure 6: Overall parallel execution time for the three versions of 3-D advection: standard, non-overlapping (STD),

overlapping with symmetric threads (OVRLP) and overlapping with asymmetric threads (ASYM). The relevant execution

time in each case is also demonstrated (*-COMP).

their achievements concerning the most efficient utilization

of the underlying execution platform. Comparing the perfor-

mance for 16 threads in STD and OVRLP with 32 threads

in ASYM, the average differences are smaller than 3%. The

proposed ASYM implementation is not able to provide any

meaningful performance improvements, since as seen from

the difference between the computation time (*-COMP) and

overall execution times, the communication overhead in 2-D

advection is very low. Since the goal of ASYM is to hide

communication under computation, this is not expected to

lead to performance improvements in this class of problems.

Note, however that in the small iteration space (1024×1024)

where the data fit in the L2 cache, making communication a

larger fraction in the overall parallel execution time, ASYM

shows a capability to hide communication leading to a slight

performance improvement of 5%.

C. Results for 3-D advection

In 3-D advection the communication overhead is much

larger since in this case each process needs to perform

communication with six neighboring ones. Figure 6 shows

the experimental results of 3-D advection for the parallel

implementations under consideration in four iteration spaces.

Again here, the fourth dimension of the iteration space

(number of parallel execution steps for the untiled version)

was set to 256. Concerning the performance behavior and

scalability, the observations are similar to the 2-D advection:

STD and overlap perform in similar ways and scale well

until 16 threads. Beyond that number of threads, due to

the involvement of HT, their performance drops. Note,

however, that in this case the difference between the overall

parallel execution and the computation time is very high,

indicating that the communication overhead represents a

crucial fraction of the overall time. In this case we notice that

the ASYM implementation succeeds very well in hiding the

communication, a fact that leads to non-negligible overall

performance improvements. Comparing the best scores of

each implementation (16 threads in STD and OVRLP and

32 threads in ASYM) ASYM is able to provide on average

a 13% overall performance improvement over STD and can

reach up to 20% (in iteration space 192×192×192). Further

performance comparisons between the three implementa-

tions are provided in the next paragraph.

D. Overall evaluation

In order to gain a better insight into the capabilities

and shortcomings of each implementation, we provide the

plots of Figure 7, where we depict the normalized (to

the overall parallel execution time of STD) computation,

communication and parallel execution times of OVRLP and

ASYM. Figures 7a and 7b demonstrate the capabilities of the

three implementations to utilize all the available resources of

our 8-node cluster, i.e. by assigning threads in all 32 logical

processors. As expected, the ASYM implementation based

on the assignment of asymmetric threads on the same SMT

processor leads to an average 17% and 18% performance

improvement in 2-D and 3-D respectively.

However, the most important metric to assess the three

implementations, is their maximum performance for the

given platform. This is achieved using 16 threads in STD and

OVRLP and 32 threads in ASYM. The results are visualized

in Figure 7c for 3-D only, since in 2-D we noted no

significant differences between the three implementations.

3-D ASYM is able to provide on average a 13% overall

performance improvement over STD and can reach up to

20% (in iteration space 192×192×192) by successfully

reducing the overhead of communication.

A third comparison seems also quite interesting: In this

case we consider 8 threads for STD and OVRLP, and

16 threads for ASYM, that provides a solid view of the

performance for an 8-node, single-processor cluster. Since

the interference of HT is harmful for STD and OVRLP, using

8 threads is the best configuration for these implementations.

The comparison in this case is shown in Figure 7d. On aver-

age, ASYM outperforms STD in this execution environment

by 19% and can reach up to 23% performance improvement

(in iteration space 128×128×128).

Overall, we can conclude that in the presence of sig-

nificant communication overheads, as is the case with 3-

D advection, the proposed ASYM implementation is capa-

ble of achieving non-negligible performance improvements

compared to the standard and straightforward overlapping

implementation. Indeed, ASYM offloads communication op-

erations to the sibling thread of SMT and exploiting the

asymmetry of the computation and communication threads

reaches up to a 20% performance improvement in a two-

processor cluster and up to 23% in a single-processor cluster.

This is a noteworthy performance improvement since, as

reported in [2], HT can provide a performance boost of

20-30% in the processor used. Our experimental results

also demonstrate that ASYM greatly reduces communication

overheads, although it increases the overall computation time

(Figures 5–7). This can be attributed to the fact that ASYM

uses half the processors for computations used by STD and

OVRLP. Finally, as depicted in Figure 4, ASYM has to

also pay the additional cost of synchronization between the

communication and computation threads. As discussed in

[24], this overhead is significant in SMT processors.

VI. RELATED WORK

The first step to achieve overlapping of computation with

communication is to break the inherent serialization of

an applications, by re-engineering the algorithm itself. For

example, Lain and Banerjee [25] work on irregular stencil

computations and propose a graph coloring scheme to enable

communications to occur in parallel with computations.

Cerio et al. [26] propose a technique named communication

pipelining, according to which data are communicated as

soon as they are produced. The authors consider hypercube

networks with asynchronous communication protocols sup-

porting overlapping. In [21] the overlapping schedule for

the class of applications under consideration was proposed,

while in [13] this schedule was coupled with an underlying

SCI network [27] to implement actual overlapping. Danalis

et al. [14] present a method to transform MPI programs di-

rected towards improving communication-computation over-

lap in MPI collective operations. The approach is verified

using Myrinet. Bell et al. [15] focus on FFT as a test

application, and show how overlapping can be beneficial

with the use of small messages that perform communication

as soon as data are ready. Their experimental platform

involve clusters with Infiniband, Quadrics and Myrinet.

Quite recently Sancho and Kerbyson [28] multiplex several

Conjugate Gradient solvers to achieve overlapping in a

cluster interconnected with Infiniband.

Asymmetric threading scenarios for Hyper-threaded pro-

cessors have been explored also in several contexts. Prefetch-

ing helper threads [7], [8]. run along the main application

thread on an idle hardware context and speculatively prefetch

data into a shared cache, following a technique known as

Speculative Precomputation. These schemes rely on earlier

software-controlled helper threading schemes, studied in

the context of simulated SMT models [4], [6]. The key

difference is that the latter assumed idealized hardware

support (e.g., ideal SMT implementation, multiple spare

contexts for the helper threads, special hardware for thread

management, etc.) which turned out to be a determinant fac-

tor for achieving good performance. Researchers have also

proposed hardware-controlled helper threading schemes,

where a number of helper threads invisible to software

transparently perform cache prefetching or optimize branch

predictions on behalf of the main application thread [3],

[29], [30]. In [31] helper threading is incorporated within Di-

jkstra’s algorithm and coupled with Transactional Memory

to speed up parallel execution. Zhang et. al [32] propose a

dynamic optimization framework in which the helper threads

dynamically optimize the code of the application thread as it

executes. Gummaraju and Rosenblum in [33] investigate the

Communication

Computation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

O
V

R
L

P

A
S

Y
M

O
V

R
L

P

A
S

Y
M

O
V

R
L

P

A
S

Y
M

O
V

R
L

P

A
S

Y
M

N
o

rm
al

iz
ed

 t
im

e
o

v
er

 s
ta

n
d

ar
d

 M
P

I
(3

2
 t

h
re

ad
s)

Iteration Space

1024x1,024 2048x2,048 3072x3,072 4096x4,096

(a) 2D: 32 threads in STD/OVRLP/ASYM

Communication

Computation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

O
V

R
L

P

A
S

Y
M

O
V

R
L

P

A
S

Y
M

O
V

R
L

P

A
S

Y
M

O
V

R
L

P

A
S

Y
M

N
o

rm
al

iz
ed

 t
im

e
o

v
er

 s
ta

n
d

ar
d

 M
P

I
(3

2
 t

h
re

ad
s)

Iteration Space

128x128x128 192x192x192 256x256x256 320x320x320

(b) 3D: 32 threads in STD/OVRLP/ASYM

Communication

Computation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

O
V

R
L

P

A
S

Y
M

O
V

R
L

P

A
S

Y
M

O
V

R
L

P

A
S

Y
M

O
V

R
L

P

A
S

Y
M

N
o

rm
al

iz
ed

 t
im

e
o

v
er

 s
ta

n
d

ar
d

 M
P

I
(1

6
 t

h
re

ad
s)

Iteration Space

128x128x128 192x192x192 256x256x256 320x320x320

(c) 3D: 32 threads in ASYM, 16 threads in STD/OVRLP

Communication

Computation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

O
V

R
L

P

A
S

Y
M

O
V

R
L

P

A
S

Y
M

O
V

R
L

P

A
S

Y
M

O
V

R
L

P

A
S

Y
M

N
o

rm
al

iz
ed

 t
im

e
o

v
er

 s
ta

n
d

ar
d

 M
P

I
(8

 t
h

re
ad

s)

Iteration Space

128x128x128 192x192x192 256x256x256 320x320x320

(d) 3D: 16 threads in ASYM, 8 threads in STD/OVRLP

Figure 7: Comparison between the three implementations for various combinations of threads.

mapping of stream programs on a Hyper-threaded processor.

This work is relevant to ours in the sense that the stream

programming paradigm provides a way to decouple memory

accesses and computation in a program, thus being a good

case for SMT processors. The authors propose separate work

queues for each kind of operation to dynamically overlap

memory operations and computations.

VII. CONCLUSIONS

In this paper we worked on the efficient implementation

of computation to communication overlap in a cluster of

SMTs with a commodity interconnect. Since our intercon-

nection network does not support overlapping, our goal is

to offload communication operations to the sibling thread

of an SMT processor. In this way, we are able to assign

two asymmetric threads to the processor, a strategy that is

proven to be beneficial for this architectural design. Our test

case is the parallelized advection equation, which is executed

based on a proper linear schedule that allows concurrent

computation and communication phases. Our experimental

results demonstrate that the proposed implementation is able

to provide non-negligible performance improvements that

can exceed 20% compared to the standard non-overlapping

parallelization scheme.

ACKNOWLEDGMENTS

This research is supported by the PENED 2003 Project

(EPAN), co-funded by the European Social Fund (80%) and

National Resources (20%).

REFERENCES

[1] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm,
and D. M. Tullsen, “Simultaneous multithreading: A platform
for next-generation processors,” IEEE Micro, vol. 17, no. 5,
pp. 12–19, 1997.

[2] N. Tuck and D. M. Tullsen, “Initial observations of the
simultaneous multithreading pentium 4 processor,” in PACT
’03: Proc. of the 12th international conference on Parallel
architectures and compilation techniques. Washington, DC,
USA: IEEE Computer Society, 2003, p. 26.

[3] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and
Y. N. Patt, “Simultaneous subordinate microthreading (ssmt),”
ISCA ’99: Proc. of the 26th annual international symposium
on Computer architecture, no. 2, pp. 186–195, 1999.

[4] C.-K. Luk, “Tolerating memory latency through software-
controlled pre-execution in simultaneous multithreading pro-
cessors,” in ISCA ’01: Proc. of the 28th annual international
symposium on Computer architecture. New York, NY, USA:
ACM Press, 2001, pp. 40–51.

[5] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. P. Shen, “Speculative precomputation: long-
range prefetching of delinquent loads,” in ISCA ’01: Proc.
of the 28th annual international symposium on Computer

architecture. New York, NY, USA: ACM Press, 2001, pp.
14–25.

[6] H. Wang, P. H. Wang, S. M. Ettinger, S. S. wei
Liao, and J. P. Shen, “Speculative precomputation:
Exploring the use of multithreading for latency,” in
Intel Technology Journal, vol. 6, no. 1, 2002. [Online].
Available: citeseer.ist.psu.edu/586671.html

[7] D. Kim, S. S. wei Liao, P. H. Wang, J. del Cuvillo, X. Tian,
X. Zou, H. Wang, D. Yeung, M. Girkar, and J. P. Shen,
“Physical experimentation with prefetching helper threads
on intel’s hyper-threaded processors,” in CGO ’04: Proc.
of the International Symposium on Code Generation and
Optimization. Washington, DC, USA: IEEE Computer
Society, 2004, p. 27.

[8] E. Athanasaki, N. Anastopoulos, K. Kourtis, and N. Koziris,
“Exploring the performance limits of simultaneous multi-
threading for memory intensive applications,” J. Supercom-
put., vol. 44, no. 1, pp. 64–97, 2008.

[9] I. T. Association, “InfiniBand Architecture Specification, Re-
lease 1.0, 2000,” http://www.infinibandta.org/specs.

[10] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. Su, “Myrinet: A Gigabit-
per-Second Local Area Network,” IEEE Micro, vol. 15, no. 1,
pp. 29–36, Feb 1995.

[11] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Frachten-
berg, “Quadrics network (qsnet): High-performance clustering
technology,” in Hot Interconnects 9, Stanford University, Palo
Alto, CA, August 2001.

[12] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu,
D. Buntinas, P. Wyckoff, and D. K. Panda, “Performance
comparison of mpi implementations over infiniband, myrinet
and quadrics,” in SC ’03: Proc. of the 2003 ACM/IEEE
conference on Supercomputing. Washington, DC, USA:
IEEE Computer Society, 2003, p. 58.

[13] N. Koziris, A. Sotiropoulos, and G. Goumas, “A Pipelined
Schedule to Minimize Completion Time for Loop Tiling with
Computation and Communication Overlapping,” Journal of
Parallel and Distributed Computing, vol. 63, no. 11, pp.
1138–1151, Nov 2003.

[14] A. Danalis, K. Y. Kim, L. Pollock, and M. Swany, “Trans-
formations to parallel codes for communication-computation
overlap,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC05), Seat-
tle, WA, USA, November 2005.

[15] C. Bell, D. Bonachea, R. Nishtala, and K.Yelick, “Optimizing
Bandwidth Limited Problems using One-sided Communica-
tion and Overlap,” in Proc. of the IEEE International Parallel
and Distributed Processing Symposium (IPDPS’06), Rhodes,
Greece, Apr 2006.

[16] G. E. Karniadakis and R. M. Kirby, Parallel Scientific Com-
puting in C++ and MPI: A Seamless Approach to Parallel
Algorithms and their Implementation. Cambridge University
Press, 2002.

[17] F. Irigoin and R. Triolet, “Supernode Partitioning,” in Proc.
of the 15th Ann. ACM SIGACT-SIGPLAN Symp. Principles of
Programming Languages (POPL’85), San Diego, California,
USA, Jan 1988, pp. 319–329.

[18] J. Ramanujam and P. Sadayappan, “Tiling Multidimensional
Iteration Spaces for Multicomputers,” Journal of Parallel and
Distributed Computing, vol. 16, pp. 108–120, 1992.

[19] W. Shang and J. Fortes, “Time Optimal Linear Schedules
for Algorithms with Uniform Dependencies,” IEEE Trans. on
Computers, vol. 40, no. 6, pp. 723–742, 1991.

[20] W. Shang and J. Fortes, “On Time Mapping of Uniform
Dependence Algorithms into Lower Dimensional Processor
Arrays,” IEEE Trans. on Parallel and Distributed Systems,
vol. 3, no. 3, pp. 350–363, 1992.

[21] G. Goumas, A. Sotiropoulos, and N. Koziris, “Minimiz-
ing Completion Time for Loop Tiling with Computation
and Communication Overlapping,” in Proc. of the IEEE
International Parallel and Distributed Processing Symposium
(IPDPS’01), San Francisco, USA, Apr 2001.

[22] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda, “Rdma read
based rendezvous protocol for mpi over infiniband: design
alternatives and benefits,” in PPoPP ’06: Proc. of the eleventh
ACM SIGPLAN symposium on Principles and practice of

parallel programming. New York, NY, USA: ACM, 2006,
pp. 32–39.

[23] G. Goumas, N. Drosinos, and N. Koziris, “Communication-
aware supernode shape,” IEEE Trans. Parallel Distrib. Syst.,
vol. 20, no. 4, pp. 498–511, 2009.

[24] N. Anastopoulos and N. Koziris, “Facilitating efficient syn-
chronization of asymmetric threads on hyper-threaded pro-
cessors,” in Proc. of the 2nd Workshop on Multithreaded
Architectures and Applications (MTAAP 2008), Mar 2008.

[25] A. Lain and P. Banerjee, “Techniques to overlap computation
and communication in irregular iterative applications,” in ICS
’94: Proc. of the 8th international conference on Supercom-
puting. New York, NY, USA: ACM, 1994, pp. 236–245.

[26] L. Dı́z de Cerio, M. Valero-Garcı́a, and A. González, “A
method for exploiting communication/computation overlap in
hypercubes,” Parallel Comput., vol. 24, no. 2, pp. 221–245,
1998.

[27] H. Hellwagner, “The SCI Standard and Applications of SCI,”
in Scalable Coherent Interface (SCI): Architecture and Soft-
ware for High-Performance Computer Clusters, H. Hellwag-
ner and A. Reinefield, Eds. Springer-Verlag, Sep 1999, pp.
3–34.

[28] J. C. Sancho and D. J. Kerbyson, “Improving the performance
of multiple conjugate gradient solvers by exploiting overlap,”
in Euro-Par ’08: Proc. of the 14th international Euro-Par
conference on Parallel Processing. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 688–697.

[29] A. Roth and G. S. Sohi, “Speculative data-driven multithread-
ing,” in HPCA ’01: Proc. of the IEEE 7th International
Symposium on High Performance Computer Architecture.
Washington, DC, USA: IEEE Computer Society, 2001, p. 37.

[30] C. Zilles and G. Sohi, “Execution-based prediction using
speculative slices,” in ISCA ’01: Proc. of the 28th annual
international symposium on Computer architecture. New
York, NY, USA: ACM Press, 2001, pp. 2–13.

[31] K. Nikas, N. Anastopoulos, G. Goumas, and N. Koziris,
“Employing Transactional Memory and Helper Threads to
Speedup Dijkstra’s Algorithm,” in Proc. of the 38th Interna-
tional Conference on Parallel Processing (ICPP 2009), Sep.
2009.

[32] W. Zhang, B. Calder, and D. Tullsen, “An event-driven
multithreaded dynamic optimization framework,” in PACT
05: Proc. of the 14th international conference on Parallel
Architectures and Compilation Techniques, 2005, pp. 350–
360.

[33] J. Gummaraju and M. Rosenblum, “Stream programming on
general-purpose processors,” in MICRO 38: Proc. of the 38th
annual IEEE/ACM International Symposium on Microarchi-
tecture. Washington, DC, USA: IEEE Computer Society,
2005, pp. 343–354.

