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Abstract—The Sparse Matrix-Vector Multiplication kernel ex- — applications that are believed to be important for at lehst t
hibits limited potential for taking advantage of modern shaed next decade [4].
memory architectures due to its large memory bandwidth re- g gistinguishing characteristic of sparse matrices d th

quirements. To decrease memory contention and improve the th lated b | b f | ts. Th
performance of the kernel we propose two compression schemse €y aré populated by a large number of zero elements. Thus,

The first, called CSR-DU, targets the reduction of the matrix it iS highly inefficient to perform operations on these neas
structural data by applying coarse grain delta encoding forthe using typical (dense) array structures. Instead, spetiege
column indices. The second scheme, called CSR-VI, targetset  schemes are used, which target not only the efficient stavhge
reduction of the numerical values using indirect indexing ad the matrix in terms of space, but also the efficient execution

can only be applied to matrices which contain a small nhumber . fi b f - v th fi
of unique values. Evaluation of both methods on a rich matrixset  arous operations by periorming only the necessary aglion

showed that they can significantly improve the performance tthe ~ Thus, the common approach is to store only the non-zero val-
multithreaded version of the kernel and achieve good scaldlity — ues of the matrix, and employ additional indexing inforroati
for large matrices. about the position of these values. In this paper a distincti
will be made between data that are used for the represemtatio
of the matrix structureifdex datd, and data that represent
|. INTRODUCTION the numerical values of the matrix elemenial(ie datd.
In our recent work [5], as well as in related literature [6],
In recent years the processor industry has performed a tegie memory subsystem, and more specifically the memory
nology shift towards chip multiprocessor (CMP — multicorehandwidth, has been identified as the main performance bot-
designs due to the difficulties in trying to achieve higheateneck of the SpMxV kernel when executed in a uniprocessor
performance using conventional techniques such as fregueenvironment. Obviously, if more processing elements acces
scaling [1], [2]. As a result the research community has the main memory through a common bus, this performance
revitalized interest in shared memory architectures amd thottleneck will become more severe. Consequently, it is ex-
problem of application scalability up to a large number gfected that a multithreaded version of the kernel, targeted
processing cores is considered of vital importance. Déffier for shared memory architectures, will have poor perforreanc
classes of applications have different scalability prtipsr scaling as the number of processing elements increases. An
with regard to shared memory architectures. Applicatiorgpproach for alleviating this problem is the reduction of th
characterized by good temporal locality scale well, sireehe data that need to be accessed during the execution of the
core can work independently using local data residing in ik&rnel (vorking se}. In this direction and using the standard
cache, without interfering with the operation of other areCSR[3], [7] sparse format as a starting point, we propose
On the other hand, applications with streaming accessrpattetwo storage formatsCSR-DUand CSR-VI[8]. CSR-DU is a
are characterized by poor temporal locality and tend tolshigeneral format that reduces the index data using coarse grai
poor scaling due to contention on the memory subsystem. delta encoding for the compression of column indices, while
An important and ubiquitous computational kernel witlCSR-VI is a specialized format that exploits the redundancy
streaming memory accesses is the Sparse Matrix-Vector-mudif matrices with a large number of common values using
plication (SpMxV). SpMxV is used in a large variety of appliindirect value accesses. The intrinsic basis of comprasgsio
cations in scientific computing and engineering. For exanplo trade data storage volume for computation. We argue that
it is the basic operation of iterative solvers, such as Cgatiel as the number of processing elements that share the memory
Gradient (CG) and Generalized Minimum Residual (GMRES3ubsystem increases, this tradeoff will become more bealefic
extensively used to solve sparse linear systems resultimg f for the performance of memory bound applications such as
the simulation of physical processes that are described 8gMxV, even if it results in degraded performance in the
partial differential equations [3]. Furthermore, SpMxV as uniprocessor case.
member of one of the "seven dwarfs”, which are classes ofWe perform an experimental evaluation of the benefits of the



aforementioned formats in a multithreaded environment. Otior (i =0; i<N; i++)

experimental results confirm that the multithreaded versib ~ for (j=row ptr[i]; j<row ptr[i+1]; j++)

the SpMxV kernel exhibits poor scalability in a typical mode yli]l += values[j]=x[col _ind[j]];

shared memory arc_hltecture and that the proposed comgnessi The working set\(s) of the SpMxV operation consists of

schemes can alleviate the pressure on the memory subsysttﬁénmatrix and vector data and its size is ex db

. T i pressed by the

leading to significant performance improvement. The rest Bllowing formula:

the paper is organized as follows: Section Il provides an 9 ‘

introduction to various issues that are related to this veor#t ws = csr_size + vectors_size =

sets the context for the rest of the paper, while Section IlI (nnz x (idz_s + val_s) + (nrows + 1) x idz_s)

discusses the related literature. Sections IV and V briefly

present the two compression methods and Section VI contains

the results of the experimental performance evaluatiorhef twhereidz_s andval_s is the memory size required for the

methods in question in a shared memory architecture. T#i@rage of an index and a value respectively. Since for real-

paper is concluded in Section VII. life sparse matrices it holdsnz > nrows,ncols, the most
dominant terms of the working set is the size of ¢ed _i nd
andval ues arrays, which haveanz elements. Commonly,

Il. PRELIMINARIES vectorsx andy have less tha3? elements due to memory
size restrictions and thus 4byte integer is used for index
storage. Floating point values, on the other hand, normally

While shared memory architectures have been studied &quire double precision, so the typical value farl_size
tensively in the past [9], the current trend of multicore -prds 8 bytes. Under these conditions, the values constitute th
cessors, along with indications for many-core next-getiwra larger portion of the working set by a factor of3, if we
processors [10] has motivated the research community aensider only thecol _i nd and val ues arrays. Thus, in
revisit the performance issues of shared memory architestuthe scenario ofi-byte indices and-byte values, it is evident
and to investigate methods for allowing applications tdescathat the value data size reduction can be more beneficial in
up to a large number of processing units. A difference betweterms of the totas reduction. Another observation is that the
multicore processors and classic SMP systems is that viast majority of the data are accessed in a streaming fashion
the former different cores may share a part of the cachence the characterization of the SpMxV kernel as a stregmin
hierarchy (e.g. the L2 or the L3 cache). Cache sharing is application in previous paragraphs.
important factor of the system’s performance and can beeeith
constructiveor destructivefor a given application, dependingc. Parallelizing SpMxV
on whether threads scheduled on the cores that share a cac
operate on common data or not.

+ (nrows + ncols) X val_s

A. Shared Memory Architectures

I1‘?‘1ere are a number of partitioning schemes for parallaizin
the SpMxV kernel on a shared memory architecture. In the
case of the CSR format the coarse gradw partitioning
scheme is usually applied [11], where different blocks of
rows are assigned to different threads (see Fig. 2). Each
The most commonly used storage format for sparse matri¢bsead operates on different parts of thew_pt r, col _i nd,
is the Compressed Sparse Row (CSR) format [3], [7]. In CSRal ues, andy arrays, while all threads access elements on
the matrix is stored in three arraysal ues, row ptr and thex array. Since access onis read only, the data can reside
col _i nd. Theval ues array stores the non-zero elements dh each processor’s cache without causing invalidatioffi¢ra
the matrix in row-major order, while the other two arrayssto due to the cache coherency protocol. In theory, the common
indexing informationr ow_pt r contains the location of the use ofx offers potential for constructive cache sharing, but
first (non-zero) element of each row within thal ues array in practice this potential is not realized, since therenstkd
andcol _i nd contains the column number for each non-zergpace for the rest of the data, which are disjoint for eachsithr
element. The size of theal ues andcol _i nd arrays are
equal to the number of non-zero elements®), while the A —
row_ptr array size is equal to the number of rows pws)
plus one. An example of the CSR format fol6ax 6 sparse threado
matrix is presented in Fig. 1. Other generic formats are the
Compressed Sparse Column (CSC), which is simila€C8R
storing columns instead of rows, and the Coordinate format
(COOQ0), where each non-zero is stored as a triplet along with threadi
the coordinates of its location in the matrix.
The SpMxV operationy = Ax), is the multiplication
of a sparse matrixA with a (dense) vectox with the Fig. 2: Row partitioning on SpMxV
result stored in another (dense) vector The operation is
easily implemented for matrices stored in CSR form. The The complementary approach to row partitioningé@umn
SpMxV code for a matrix withV rows in CSR format is: partitioning, where each thread is assigned a block of columns.

B. Sparse Matrix Formats and SpMxV

bot h threads
1
‘ threadl ‘ t hr eadO “<




row ptr : (0 2 5 6 9 12 16 )
54 1.1 O 0 0 0
0O 63 0 77 0 88 K_J / \\_/ﬂ
O 0 11 0 0 0 _
A= 0 0 29 0 37 29 col _ind: ( 0 1 1 3 5 2 2 4 5 0 3 4 0 2 3 5)
90 O 0 11 45 0 values: (5411637788 1129372990 1.1451.1293711)
1.1 0 29 37 0 1.1

Fig. 1: Example of the CSR Storage Format

Although this approach is more naturally applied to ththat arise in matrices with a large number of rows with small
CSC format, it can also be applied to the CSR format. Alength.

advantage of column partitioning is that each thread opsrat
on a different part of thex array, which allows for better 5
temporal locality on the array’s elements in case of distinc o L ,
caches. A disadvantage, on the other hand, is that all thread” significant part of the SpMxV optimization techniques

must perform writes on all the elements of thearray. To reported in the related literature result in index data céida.

avoid cache-line ping-pongs the best practice is to havh eayPical examples are blocking methods such as BSCR and

thread use its owry array and perform a reducing additionVBR [18] that store only per-block index information. To our

at the end of the multiplication. Additionally, in the cask ok_nowledge, t_he only wor_k that explici'FIy targets th_e conspre
the CSR format column partitioning may lead to empty oon of _the index data is [19]. In this paper, Willcock and
small rows, and to a degradation of performance due to lobgmsdaine propose two methodSCSR which compresses
overheads. The combined methochidck partitioning where column indices using a byte-oriented delta encoding scheme

each thread is assigned an arbitrary two-dimensional blod® €XPloit the highly redundant nature of thel _i nd array
has the additional benefit of allowing configurable datassiz&"dRPCSRwhich generates matrix-specific dynamic code by

for each thread. This property is important for machineﬁwi?pplymg aggressive compression on column mc_ilces pattern
processing elements that have limited memory space (€. _the whole matr_|x. We will focus our comparison on the
the Cell processor). The interaction of each of the aboii-SR method, which operates on the same level as CSR-DU.
parallelization approaches with specific sparse matrices aPCSR e_n_codes the mat_rlx using a set of six command codes
their effect on performance are beyond the scope of thisrpa{)‘ér primitive sub-operations that can be used to mplement
and will be a matter of future research. he SprV kernel. Examples of such sub-ope.ratlons are
For our experimental evaluation we used row partitionin%e mcrgm_ent_ of the current row and colu_mn index, and
It can be easily implemented for CSR and the effect of© mu|t|pI|c_at|on of a number of the_ matrix values with
the proposed compression methods on the performancetrbef approprla.te vector ele_ments. A S|gn|f|gant performance
the SpMxV kernel are, for the most part, orthogonal tBroblem of this approach is that the decoding of these sub-

the partition method used. Another issue with regard to t é)eratlotns _mustd_bte éoebrformhed V?I_rﬁ/. oftent;lwhu_:h Jesﬁltts) n
parallelization of the kernel is the balancing of the woddo requent mispredicted branches. 1his problem IS dealt by a

of each thread. We applied a static balancing scheme bag o of unrolling, wh_ere pattems of frequent instance_siiof S
on the non-zero elements, where each thread is aSSiqu hese sub-operations are grouped together allowing them

approximately the same number of elements and thus the sdhde executeq seguentlally without branches. Contrmdry,
number of floating-point operations. approach, which is also _baseq on delta encoding, taclfles
the problem of branch misprediction performance penalties
in a more basic level by being more coarse grained. This
lll. RELATED WORK allows for a much simpler and general implementation, while
A. Serial SpMxV sustaining a small performance gain gap with regard to the
_ _ DCSR method. Moreover, it can handle worst-case scenarios
Due to the importance of SpMxV there is an abunda.r;‘%q the DCSR method such as matrices that exhibit large
of scientific work targeting the optimization of the seriaj,ation with regard to the patterns encountered. A more
version of the kernel. A number of alternatives to CSR hayg,i1ijeq comparison of the two methods can be found in [8].
been proposed such as BCSR (Blocked-CSR), JD (Jagged
Diagonal), CDS (Compressed Diagonal Storage) and Ellpack- _
ltpack [3], [7]. These formats try to exploit regularitiesthe C- Value Compression
structure of the sparse matrix in order to reduce the storageDespite that, in the common case, the value data con-
requirements and the execution time of SpMxV. Moreovestitute the larger part of the working set of SpMxV, there
there is a large number of works that propose optimizatidvas been little research effort targeting its reductiore k¢
techniques for the efficient execution of the kernel. Sewefra al. [20] exploit matrix symmetry by storing only half the
these works [12]-[15] aim at the optimization of the irregul matrix (reducing significantly both value and index data).
and indirect accesses on tRevector using methods such asAdditionally, there exist a number of works in the general
matrix reordering, register blocking and cache blockinthegd area of scientific computation that are related to the value
works [16], [17] are concerned with the performance prolslencompression for the SpMxV kernel. Keyes [21], proposes the

Index Compression



use of lower precision representation for data that do not unit Sections | fiags | usize | ujmp | ucis
pose problems in the convergence procedure, while Langou 0 U8, NR | 2 0 1

et al. [22] propose mixed precision algorithms, which daliv 1 ug, NR | 3 1 2,2
double precision arithmetic, while performing the bulk bét g Eg' R ; -
work in single precision. Even though these works targetemor ) B NR |3 0 31
on the exploitation of characteristics of modern architezs 5 us, NR | 4 0 212

(e.g. vectorization), they also contribute significantly the TABLE I: Example of the information included in thet |

required memory bandwidth reduction. In a different cohtex . g
Burtscher [23] proposes a method for the efficient compcz)«assiStrUCture for the matrix presented in Fig. 1
of double precision floating point values targeting netwaeaka

transfers. consists of four sectionstf | ags, usi ze, uj np anduci s.

uf | ags andusi ze havel byte size each and contain the

D. Multithreaded SpMxV unit type and size respectivelyj np is a variable length

. . . integer that denotes the distance of the unit's column index
As far as the multithreaded version of the code is concern ) LT .
. rgm the previous one, whilaci s is an array ofusi ze — 1
past work focuses mainly on SMP clusters, where researchers . . -
: . - .~ _.elements, which contains the delta values for the remaining
either apply and evaluate known uniprocessor optimization - ; :
techniques (e.g. register and cache blocking) on SMPs ccg)rlumn indices. The storage size of thei s elements 1,
q g. reg 9 '2. 4 or 8 bytes) is stored inuf | ags, along with a flag

examine reor_d_eri_ng techniqu_es t_o improve locality of refeﬁ;at marks the beginning of a new row. An example of the
ences and minimize communication cost [24}-{27]. Recentl formation included in thect | structure for the matrix of

Williams et al. [11] presented an evaluation of SpMxV O'Lig. 1 is given in Table I. There exist six units in total
a set of emerging multicore architectures. Their study rsaveefc'h of Wf?ich has delta vaiues that are stored byte (8) '
a wide and diverse range of high-end chip multiprocessorsﬁd include a marker for the existence of a new ruR)
including recent multicores from AMD (Opteron X2) and Inteﬁ simolified code snippet of the SoMxV operation for the
(Clovertown), Sun’s Niagara2 and platforms comprised & o SR-[F))U format is prezgnted in Fig g First Fizhﬂel ags and

or two Cell processors. Their work includes a rich collectio e ’

R . . . usi ze variables are extracted from tleet | array and if this
of optimizations, including some that are targeted spedijic unit belongs in a new row, the appropriate initializatioms a
at multithreading architectures on a set ©f matrices. In 9 ! pprop

their conclusions they state that memory bandwidth could bé)erformed. Next, thej np distance is extracted and the proper

significant bottleneck and advocate working set reducteah+ multiplication qode Is executed based on the type of the unit
; -~ ... The compression procedure of CSR-DU is straightforward and
nigues. It should also be noted that one of the optimizations

they apply is a simple index reduction technique, in whic an be performed m[)(nn_z) steps by scanning Fhe -matrlx
16-byte indices are used when this is applicable elements once, and keeping appropriate information irebsiff
' until a unit is finalized. This means that the construction

process of CSR-DU involves no overhead in terms of time
IV. INDEX COMPRESSION complexity compared to that of CSR. We parallelize using the

Our general approach for the compression of the indéW partitioning scheme. Both the compression method and
data is to search for regularities in the sparse matrix affte SPMxV kernel can be easily extended to support multiple
exploit them by using specially tailored run-time methodéhreads. The information that each thread needs is an affset
Hence, in our scheme the matrix is logically divided intceare thect |, val ues andy arrays, to mark the beginning of its
called units each of which is characterized by its regularitflata, and the total number of rows that have been assigned to
type. More specifically, we target the exploitation of rmatrit.
areas that exhibit some level of density, without necelysari
containing contiguous non-zero elements. This is achieved V. VALUE COMPRESSION
using a delta-encoding scheme. In our storage format,ccalle Conversely with index data, value data do not inherently
CSR-DUfor CSR Delta Unit, each unit type is characterizedontain redundancy in the general case. Nevertheless, vee ha
by the required storage size for the delta values that egpines noticed that a significant number of matrices from our exper-
column distance between consecutive non-zeros. For eeamphental set contain a small number of unique values relative
areas for which the distance between all consecutive colutanthe total non-zero valuesiiz). To exploit this redundancy
indices is less thar2® = 256, require only one byte for we propose a simple storage format, called CSR-VI for CSR
the storage of each delta value. This approach compahglue Index, where only the unique values are kept, alonly wit
to the separate encoding of each delta value using varialidices to them. More specifically, theal ues array of CSR
length integers achieves less data size reduction, buvallds replaced with two arrayszal s_uni que andval _i nd.
for innermost loops with minimum overheads, if the unit siz&he first contains the unique matrix values and the second
is large enough. It should be noted that a limitation of CSR-Dthe index in theval s_uni que array for each of theinz
is that units can not span multiple rows, which results inlsmanatrix elements. For this scheme to be beneficial in terms of
units for rows with a small number of elements. working set reduction, the value indexing data size must be

The CSR-DU method uses a byte-array caltéd to store significantly smaller than that of the initial numerical was.
all the indexing information required for each unit, whictA simple approach towards this goal is to enforce smaller



uflags = ctl _get _u8(ctl); L2 cache. The processors interface with the main memory

usize = ctl_get_ug(ctl); with the Intel 5000p Memory Controller Hub, which provides
if (flags_new row(uflags) ){ 4 channels of fully buffered DDR2 DIMM memory. All the
y_i ndx++; x_i ndx=0;
} cores operate o2 GH z.
x_! ndx += ctl_get_jnp(ctl);
switch ( flags_type(uflags) ){ ‘CO‘LI"Cl‘LlHCZ‘LlHC&“Ll‘ ‘C4‘L1"CS‘LlHCG‘LlH(‘ﬂ‘Ll‘
case CSR_DS_U8: \ \ \ \ \ \
for (;;.) { _ ) ' ‘ L2 H L2 ‘ ‘ L2 H L2 ‘
yly_i ndx] += (*val ues++) * X[x_indx];
if (--usize == 0){ ) L.
br eak; Fig. 6: A 8-core system comprising of two Clovertown pro-
} cessors
X_indx += ctl _get_u8(ctl)
{)r eak: The system was running @!-bit version of Linux (2.6.23)
' and the compiler used was versidr2.3 of gcc with the
case CSR DS _U16: optimization flag -O3. The storage size for the indices and
values were32 and64 bits respectively. The parallelization of
} the various versions of the SpMxV kernel was done explicitly

using the pthread interface of the GNU libc library (NPTL
2.7). Moreover, thesched_setaffinity() system call
was used to bind the various threads to predefined proces-
_ o o sors. The results presented in the following sections deslu
storage requirements for the individual value indices carag experiments forl, 2, 4 and8 threads. The threads are always
to the original values. Hence, the indicgs size in our methdheduled to run to as “close” as possible processors. For
is determined by the number of the unique values that negghmple2 threads are scheduled on cores which share the L2
to be addressed. For example, if there ewistunique values cache, unless otherwise stated, whiléhreads are scheduled
and it holds2® < un < 2'6, then a2-byte integer will be used o, the same physical package.
for each value index. The code for the SpMxV kernel was optimized to write the
An example of this_ value structure is presented in Fig. §{i] value at the end of each innermost loop by keeping
which contains the Fig. 1 matrix values. The SpMxV kemghe intermediate result in a register. The experiments were
implementation for CSR-VI is presented in Fig. 5 and can b@nducted by measuring the execution time 26 consecutive
easily derived from the CSR case by replacing the direct agpmxv operations with randomly createdvertices. It should
cesses ofal ues with an indirect access afal s_uni que  pe noted that we made no attempt to artificially pollute the
based on the value ofal _i nd. Even though the resulting cache after each iteration, in order to better simulatetite
code includes an additional memory reference for each of thgentific application behavior, where the data of the roafi

nnz elements, it will lead to fewer memory accesses when thge present in the cache because either they have just been
number of unique values is relatively small. The compressigyoduced or they were recently accessed.

method for CSR-VI is implemented using a hash table and

as in CSR-DU its complexity i€)(nnz). The multithreaded g \atrix Set
version is trivially derived from the serial by providing éach
thread the first and the last row that it needs to process.

Fig. 3: code snippet for the SpMxV kernel for CSR-DU

One of our initial requirements was to perform experiments
on a rich and diverse set of matrices. In [5] we have presented
performance evaluation of the SpMxV kernel @0 matrices,

fofr (i=0; i<N ti ) § CrTiAll fe the majority of which have been selected from Tim Davis’s
O\rlgjl -r:oyalpsr EJlna Equ]e[ CZYV‘ianH 11 ] Pt collection [28]. These matrices will be used as our basid, an
y[i] += val*x[col _ind[j]]; ’ can be identified by their name and id number (see [5]). Two

basic classes of matrices can be distinguished, depending o

whether the working set of the kernel fits completely into
Fig. 5: SpMxV kernel for the CSR-VI storage format the L2 cache or not. In an iterative SpMxV computation,
matrices which have working set larger than the L2 cache
may experience capacity misses, while matrices with a small
working set experience only compulsory misses and gengerall
. perform better. Since in this work we are mainly concerned
A. Experimental Setup with matrices that perform poorly due to memory bandwidth

Our experiments where conducted on &tore system, limitations, we only consider matrices from the second<las

comprising of two Intel Clovertown processors (Fig. 6). Thelence, we reject matrices with working set less ttign
Clovertown processor is a quad core processor which is buift the L2 size, in order to also cover border-line cases
by combining two Woodcrest chips. Each of the Woodcregt.g. memory accesses due to conflict misses), which for our
chips contains two cores with two privaie KB 8-way caches systems translates s > 3 M B. We also reject the dense
for instructions and data and a shared unifieB 16-way matrix. The resulting set consists ©f matrices £-13, 15 17,

VI. EXPERIMENTAL EVALUATION



val _ind ( 0 1

val s_uni que ( 54 1163 7.7 88 29737790 45 )
Fig. 4: Example of the value indexing structure for the CSRdfmat for the matrix presented in Fig. 1

21, 25, 26, 36, 40-42, 44-53, 55-100) and we will refer to it be noted, that the matrices are sorted by their speedup and
as M. each sub-graph has a different scale. Table Ill presents ove
The utilization of multiple cores with separate caches irall performance improvements of CSR-DU against the CSR
creases the total cache size available to the kernel. Thusydrsion that utilizes the same number of threads, in terms of
is possible for the working set of a matrix Mg, to fit speedups. The last column for thd s and M, sets contains
completely in the system’s cache as more cores are usedtha number of matrices for which the usage of CSR-DU results
this case the kernel is expected to exhibit significant speedin a non-negligible slowdownspeedup < 0.98).
which may even be superlinear. Conversely, the performance

of matrices that are too large to fit in the total L2 cache will ;gggm

. . o .. . ] 4 cores (2xL2)
differ significantly from the rest. Thus, we divid&1, into iz
two subsets:My,, which contains matrices with a working ~ “| 2 p g @ B B B . B ool Bl
set that is larger or equal tbx L2+ 1M B =17TMB (2, 5, 3 |y
8-10, 15, 40, 45, 46, 50-53, 55-57, 59, 61-64, 69-78, 80-100) i g

i i 1 o 0
and Mg, which contains the rest of the matrices. S I g R N
S o a° T @ PT o o

C' CSR Performance 2716.5% 16.5% 9.4% 11.1% 16.7% 16.7% 16.7% 15.3% 16.9% 16.5% 15.9% 16.4% 16.8% :

Table Il presents overall results (average, maximum and §
minimum) for the performance of the CSR SpMxV kernel for o .

the Mg, M and M, sets. The results of the serial version ORGP
are expressed in floating operations per second (FLOPSg whi ¢ *°
the results for the multithreaded versions in terms of spped |
relative to the corresponding serial version. There are two
results presented fat threads, one for cores with a shared .

cache and one for cores on the same die but with separate o o o a2
caches, which confirm that cache sharing is destructive for @35 o
SpMxV. As expected, CSR scales rather pooflyl{) for 8 ]
threads, and especially for matrices that belong in Mg,

set @.12), due to large memory bandwidth requirements. On p
the other hand, CSR performance for matrices of g set o
scale relatively well foB cores ¢.19) due to reduced memory
contention on the bus.

RN 20 % ST
A 0~ K@ oo WO
X @(\\é w\f % 82 o
o < K

speedup

n o 5y
K > 0\’& Se7as
ST et gt T g

0 & g @ O o RSP R A L N
LSy Q7 (& o 3 o o & 190 &
e\o,$153<\ o9 P S At ) 19@\’ o

M (25 matrices) || My, (52 matrices) [[ Mo
core(s) avg max | min avg max | min avg
1 619.4|886.6 | 465.2 || 477.8|594.4 | 202.4 || 523.6 /
2 (ixr2) || 1.17 [ 1.62 [ 0.90 || 1.15 [ 1.40 | 1.07 || 1.16 o o o o o 0 0 T o e e
2 (2x12)|| 1.93 | 2.50 | 1.24 || 1.24 | 1.47 | 1.09 || 1.46 BTt e S T 6T T oo o o e of
4 2.63 | 432 | 1.54 || 1.28 | 1.73 | 1.12 || 1.72
8 6.19 | 8.71 | 2.12 || 2.12 | 6.30 | 1.58 || 3.44

TABLE II: overall CSR SpMxV performance (serial and
multithreaded)

NEIPRC
" &
&

b
o 7 ef
o€ 1;yﬁ 3

N

Fig. 7: Detailed performance evaluation of the CSR-DU mul-

D. CSR-DU tithreaded SpMxV kernel
Fig. 7 provides a comparison of the CSR and CSR-DU

methods by showing CSR-DU speedups relative to the CSRA first observation is that CSR-DU performs better than
serial version for each matrix iM, (bars), along with the CSR on average. In the uniprocessor case our method performs
corresponding speedups of the CSR multithreaded versgimilarly with the CSR 2% improvement). This indicates a
(black squares). In addition the matrix size reductiontiega discrepancy with previous results in [8], which in general
to the original CSR size is also presented (text). It shousthowed better performance improvement on a Woodcrest pro-



Mg (25 matrices) M, (52 matrices) Mo

performance, and Table IV contains overall comparisonltgsu

core(s)|| avg | max | min | <o.98 || avg | max | min | <o.98 avg
1 1.02|1.12]0.80] 5 |[[1.01|1.14[0.69] 17 || 1.01 between CSR and CSR-VLI.
2 1.24(1.49[1.06] 0 [[1.10]1.19[0.90] 2 1.15
4 1.24(1.89(0.81| 4 [[1.15]1.36[0.99] © 1.18
8 1.05|1.40(0.86| 8 |[[1.20]1.82[0.99] 0 1.15

TABLE IlI: Overall comparison of CSR-DU and CSR multi-
threaded versions

cessor. We attribute this change in the lower clock frequenc
the Clovertown processor, which makes the computationAmem
ory access tradeoff less effective. Experimental resuits f
a number of matrices in the Woodcrest processor with its
frequency reduced t@ GHz support this claim. Conversely
with the serial case, the multithreaded version of CSR-DU
achieves more noticeable speedups on/iig set: 15%, 18%

and 15% for 2, 4 and 8 threads respectively. This suggests
that CSR-DU and index compression schemes in general can ;
be beneficial for shared memory architectures, even if the RIS
serial performance is similar or worse than that of CSR. For ¢
the Mg set, the performance improvement of CSR-DU drops ) i
significantly (from24% to 5%) for 8 cores since a large partF'g- 8: Detailed performance evaluation of the CSR-VI mul-
of the working set resides in the cache leaving litle spadfhreaded SpMxV kernel

for optimization by its reduction. Moreover, as the numbkr o
cores increases so does the number of matrices that exhibit
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significant slowdown when the CSR-DU method is applied in avg/l%;s mn?:'ci?gs a\g/lv;(azf Tn?;mcfj)% /\;fg

the Mg set (, 4, 8 for 2, 4 and 8 threads respectively). On [ 1031171094 2 l[1.12|154]065] 7 1.10

the other hand, for matrices of thef; set CSR-DU exhibits 2 1.30[1.56[0.99] 0 [[1.86[2.07]0.80] 3 1.35

significant performance scalability as it react2s8s for 8 ;‘ iﬁz f-?g 8-32 ; izg ;;g é-gg 8 1-:1

cores and there are no matrices for which the CSR-DU results - - - - - . :

in significant slowdown fort or 8 threads. TABLE IV: Overall comparison of CSR-VI and CSR multi-
threaded versions

E. CSR-VI The performance behavior of the CSR-VI method is analo-

Contrary to the CSR-DU method, CSR-VI can be applie@PUs t0 the one of the CSR-D_U. For .th(? se.riall case CSR-VI
meaningfully only to matrices with a large number of commofichieves al0% over CSR, which again is significantly less
values. Thus, to elaborate on the applicability of the methdhan the results presented in [8] and can be attributed to
to a given matrix, we consider thetal-to-unique(ttu) values the Ilower frequency of the processor in our sys.tem. For the
ratio, which is defined as the fraction of the total valuesz) Multithreaded case the average speedups against CSR over
to the number of values that are unique in the matrix. A highe Mq' set are35%, 47% and 44% for 2, 4 and8 threads
total-to-unique values ratio indicates that the matrix fnfj respectively. This fact shows that the CSR-VI method can be
for the CSR-VI method, while a small one shows that it wilve"y beneficial for matrices with a small number of unique
most likely result in slowdown. We use the empirical crioeri values, when multiple threads are employed. The average
ttu > 5 to select the appropriate matrices frav,. The Performance improvement oM is marginally reduced by
resulting set consists af0 matrices and we will refer to it 3% from 4 to 8 cores, due to the behavior of matrices in
as Mt. It should be noted that tha13’ matrices constitute the M3’ set, for which the CSR-VI speedups drop drastically
approximately the39% of M, which indicates that CSR-VI (from 25% to 2%). On the other hand the matrices in thej’
can be applied to an important number of real-world matrice3et remain memory bound and their speedup improves by a
By applying an analogous rationale as before, we spliftttig small factor (from55% to 59%) when all8 cores are used.
set into two subsetsA1%* and M’S’i), separating matrices
which are memory-bound even when all the cores are used, VII. CONCLUSIONS
from those which are notMY® contains22 matrices 9, 40, We have presented two sparse-matrix storage formats,
45, 46, 50-53, 57, 61, 63, 69, 70, 73, 80, 82, 84-87, 93, 99) named CSR-DU and CSR-VI, that target the performance
and MY 8 (26, 41, 42, 44, 47, 67, 68, 79). The results of the improvement of the multithreaded SpMxV operation by alle-
experimental evaluation for the CSR-VI method are presenteiating the contention on the memory subsystem via index and
in an identical way as the results of the CSR-DU methodalue matrix data compression respectively. More spedifica
Fig. 8 contains detailed results for the CSR-VI and the CSBSR-DU applies a coarse grain delta encoding for the column
methods, expressed as speedups relative to the serial @&Rces, while CSR-VI uses indirect indexing for the nuroati



value data and can be applied only to matrices that exhihit]
a large number of common values. Both formats exhibit
significant performance improvement when compared to thg,
CSR version over a rich set of matrices and especially for
those which are large enough to preserve the memory bog&q
nature of the kernel. In addition, the proposed methods are
stable, as there was no memory bound matrix for which they
resulted in a significant slowdown far or 8 threads when [17]
compared to CSR. Since we compare our methods against
a CSR version with32-bit indices and64-bit values the [18]
CSR-VI method achieved substantial better improvemenmt tha
CSR-DU. It should be noted though, that this imbalance gy
subject to change, as the available physical memory of ma-
chines increases and it becomes possible to support nsatrice
which require64-bit index addressing. Finally, we argue thafzo]
our approach designates a general optimization methogolog
for memory intensive problems (e.g. graph or database algo-
rithms), where compression sacrifices CPU cycles to alievia}21
the memory pressure and can potentially lead to substantiaa
performance improvements in multithreaded executionn evi?]
if it leads to slowdowns in the uniprocessor case.
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