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Abstract—In this paper we work on the parallelization of the
inherently serial Dijkstra’s algorithm on modern multicore plat-
forms. Dijkstra’s algorithm is a greedy algorithm that computes
Single Source Shortest Paths for graphs with non-negative edges
and is based on the iterative extraction of nodes from a priority
queue. This property limits the explicit parallelism of the algo-
rithm and any attempt to utilize the remaining parallelism results
in significant slowdowns due to synchronization overheads. To
deal with these problems, we employ the concept of Helper
Threads (HT) to extract parallelism on a non-traditional fashion
and Transactional Memory (TM) to efficiently orchestrate the
concurrent threads’ accesses to shared data structures. Results
demonstrate that the proposed implementation is able to achieve
performance speedups (reaching up to 1.84 for 14 threads),
indicating that the two paradigms could be efficiently combined.

I. INTRODUCTION

Parallel programming is a very intricate, yet increasingly

important, task as we have entered the multicore era and more

cores are made available to the programmer. Although separate

applications or independent tasks within a single application

can be easily mapped on multicore platforms, the same is

not true for applications that do not expose parallelism in a

straightforward way. Dijkstra’s algorithm [1] is a challenging

example of such an application that is difficult to accelerate

when executed in a multithreaded fashion. It is a fundamental

algorithm applied to compute single source shortest paths

(SSSP) for graphs with non-negative edges and is used in a

variety of applications, like network routing or VLSI design.

Dijkstra’s algorithm iteratively extracts one node from a

min-priority queue and performs relaxations to this node’s

neighbors. To preserve the semantics of the algorithm the

extractions must be performed sequentially, a fact that greatly

prohibits efficient parallelization [2], [3]. Straightforward par-

allelism can be sought in the relaxation of the neighbors,

but this approach leads to significant performance slowdowns,

since the threads need to synchronize their concurrent access to

shared data very frequently [4]. Its fundamentally serial nature

has led researchers to seek performance through significant

modifications of the algorithm [3], [5], [6], [7]. However, in

this work we adhere to the original version and attempt to

improve its performance by utilizing the capabilities provided

by modern multicore processors. To this direction, we need to

face the two major issues inherent to the algorithm: limited

explicit parallelism and excessive synchronization.

Since Dijkstra’s algorithm does not favor the utilization

of multiple symmetric threads in any standard parallelization

scheme (e.g. data-parallel, task-parallel, pipeline), we elabo-

rate on the concept of Helper Threads (HT) [8], [9] and test

whether the incorporation of helper threads is a good strategy

to provide performance speedups. The key idea is to employ a

number of threads that will offload operations from the main

thread in a transparent way.

To amortize the cost of excessive synchronization, we

employ Transactional Memory (TM) [10], [11]. TM is a

novel programming model for multicore architectures that

allows concurrency control over multiple threads and is getting

adopted by the industry, as it is demonstrated by Sun’s coming

processor Rock [12] or Intel’s STM [13]. The programmer

is offered the capability to envelop parts of the code within

a transaction, indicating that some of the memory accesses

in this code segment may be performed by other threads as

well. The TM system monitors the transactions of the threads

and if two or more perform conflicting memory accesses,

it decides how to handle this conflict. The common case

is to allow one thread to commit its transaction and restart

the transaction(s) of the other conflicting thread(s). In the

case of non-conflicting transactions, TM systems perform the

appropriate accesses with (almost) no overhead. TM seems a

promising approach which increases programmability while

being capable of providing performance gains through the

concept of optimistic parallelism. Therefore, if for a given

problem the threads access the same memory location too

rarely, then locking seems a pessimistic exaggeration, making

TM a more appropriate approach. Lately, TM’s usage in the

parallelization of specific algorithms has attracted scientific

attention [14], [15], [16], as its potential on the speedup of

real-world applications is still under investigation.

The evaluation of our scheme demonstrates that the

combination of the aforementioned approaches can provide

speedups, while requiring only a few extensions to the original

source code. The rest of the paper is organized as follows: Sec-

tion II discusses the basics of Dijkstra’s algorithm. Section III

presents our scheme while Section IV presents its evaluation.

Related work is presented in Section V and Section VI
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(c) Non-conflicting concurrent updates.

Fig. 1: Min-priority queue and DecreaseKey operations.

summarizes the paper and discusses future work directions.

II. THE BASICS OF DIJKSTRA’S ALGORITHM

Dijkstra’s algorithm solves the SSSP problem for a directed

graph with non-negative edge weights. Specifically, let G =
(V, E) be a directed graph with n = |V | vertices, m = |E|
edges, and w : E → R

+ a weight function assigning non-

negative real-valued weights to the edges of G. For each

vertex v, the SSSP problem computes δ(v), the weight of

the shortest path from a source vertex s to v. The weight

of the path is the sum of the weights of its edges. If v is

not reachable from s, then δ(v) = ∞. For each vertex v,

Dijkstra’s algorithm maintains a shortest-path estimate (or

tentative distance) d(v), which is an upper bound for the

actual weight of the shortest path from s to v, δ(v). Initially,

d(v) is set to ∞ and through successive edge relaxations it is

gradually decreased, converging to δ(v). The relaxation of an

edge (v, w) sets d(w) to min{d(w), d(v) + w(v, w)}, which

means that the algorithm tests whether it can decrease the

weight of the shortest path from s to w by going through v.

The algorithm maintains a partition of V into settled, queued

and unreached vertices. Settled vertices have d(v) = δ(v);
queued have d(v) > δ(v) and d(v) 6= ∞; unreached have

d(v) = ∞. Initially, only s is queued, d(s) = 0 and all other

vertices are unreached. In each iteration of the algorithm, the

vertex with the smallest shortest-path estimate is selected, its

state is permanently changed to settled and all its outgoing

edges are relaxed, causing any of its neighbors that were

unreached by the source vertex until this point to become

queued. The algorithm is presented in more detail in Alg. 1.

The basic data structure lying at the heart of Dijkstra’s

algorithm is a min-priority queue of vertices, keyed by their

d(·) values. The queue maintains all but the settled vertices of

the graph. At each iteration, the vertex with the smallest key

is removed from the queue (ExtractMin operation) and its

outgoing edges are relaxed, which could result to reductions

of the keys of the corresponding neighbors (DecreaseKey

operation). To amortize the time complexity of these oper-

ations, the min-priority queue is implemented as a binary

heap. Thus, a DecreaseKey operation on a relaxed node

involves an upward traversal of the heap with consecutive

parent-child swaps, until the node reaches its correct position

which satisfies the min binary heap’s property, i.e. all children

have a key value larger or equal to that of their parent. An

example is shown in Fig. 1a.

The algorithm involves a two-level nested loop. The outer

loop iterates over all the nodes and each time extracts the

one closest to the settled set. It clearly prioritizes the nodes

and thus, is inherently serial. The inner loop relaxes the

neighbors of the extracted node. The order of the relaxations is

irrelevant and thus, this loop is conceptually parallel.However,

its operations include DecreaseKey, which means that the

threads may need to modify the binary heap concurrently.

Fig. 1b depicts how the parallel relaxations of two nodes

can lead to conflicting DecreaseKey operations. In this

example, the relaxation of node i causes its traversal to the

root of the heap. If j is relaxed in parallel, a conflict arises as

it tries to travel through the parts of the heap that i traverses.

Algorithm 1: Dijkstra’s algorithm.

Input : Directed graph G = (V, E), weight function w : E → R
+,

source vertex s, min-priority queue Q

Output : shortest distance array d, predecessor array π

/* Initialization phase */

foreach v ∈ V do1

d[v]← INF;2

π[v]← NIL;3

Insert(Q, v);4

end5

d[s]← 0;6

/* Main body of the algorithm */

while Q 6= ∅ do7

u← ExtractMin(Q);8

foreach v adjacent to u do9

sum← d[u] + w(u, v);10

if d[v] > sum then11

DecreaseKey(Q, v, sum);12

d[v]← sum;13

π[v]← u;14

end15

end16

To preserve the semantics of the algorithm, we need to syn-

chronize the threads’ accesses to the heap. In [4] we evaluated

two multithreaded versions of the algorithm, one based on a

coarse-grain synchronization scheme which locks the entire

binary heap and one based on a fine-grain synchronization

scheme where the threads lock pairs of nodes. Note that,

apart from the synchronized accesses to the priority queue, the

threads need to synchronize further (e.g. with a barrier) at the

end of their parallel relaxation phase, in order for the execution

to proceed correctly to the next iteration of the outer loop. Due

to this excessive synchronization, both versions exhibited poor

performance, motivating us to look for alternatives.

III. SPEEDING UP DIJKSTRA’S ALGORITHM

This section presents our scheme for parallelizing Dijkstra’s

algorithm. It tries to deal with the two major problems, the lack
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Fig. 2: Example of HT scheme’s functionality.

of sufficient explicit parallelism and the synchronization costs.

A. Extracting more parallelism

As discussed in Section II, explicit parallelism exists only in

the inner loop of Dijkstra’s algorithm. Our goal is to coarsen

the granularity of parallelism as in [3], [6], [7], without though

changing the algorithm itself. Thus, instead of partitioning the

inner loop and assigning only a few neighbors to each thread,

we parallelize the outer loop by assigning the relaxation of a

complete set of neighbors to each thread.

We specifically exploit the following basic property of

Dijkstra’s algorithm: the relaxations lead to monotonically

decreasing values for the distances of unsettled nodes until

each distance reaches its final minimum value. As long as a

node is inserted in the queued set (i.e. its distance from S is

not infinite) its neighbors can also be relaxed to newer updated

values. This property is not utilized by the original algorithm,

which avoids calculating intermediate distances that will even-

tually be overwritten by updating only the neighbors of the

extracted node. Our key idea is that parallel threads can serve

as Helper Threads and relax neighbors of nodes belonging to

the queued set. Optimistically, the load corresponding to some

of these relaxations will be taken off the main thread.

The rationale behind our scheme is that vertices occupy-

ing the top k positions in the queue might be, with some

probability, already settled. When the helper threads read

their distances and relax their outgoing edges, there is a high

probability they will set their neighbors to settled as well.

Thus, when the main thread checks these vertices later, it

will avoid any further relaxations. On the contrary, if a helper

thread reads a node that has not been settled yet, it will update

its neighbors to suboptimal tentative values. When, though, the

node is extracted by the main thread later on, all its outgoing

edges will be re-relaxed using the correct final distance.

This is illustrated in Fig. 2, where the i-th iteration of

the outer loop is depicted. In the previous step, node A was

extracted and its neighbors were relaxed to the values shown.

In the current step, the main thread extracts node B, while

the helper threads are assigned the next three nodes in the

priority queue, namely C, D and E. Thus, C’s neighbors will

be relaxed using value 60. However, at the end of this step, C’s

distance will be updated to 57 by the main thread. In step i+1
the main thread will extract C and relax again its neighbors

extract-min relax outgoing edgesread tid
th
-min
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Fig. 3: Execution pattern of the HT scheme.

using now the correct distance. In this case, the helper thread’s

work has been wasted. On the contrary, the distances for nodes

D and E will not change, as they obtained their minimum

value in the i−1 step. Thus, in step i, the helper threads relax

their neighbors correctly and when the main thread extracts

them it will not have to perform any relaxations.

In our implementation, the main thread operates like in the

sequential version, extracting in each iteration the minimum

vertex from the priority queue and relaxing all its outgoing

edges. At the same time, the k-th helper thread reads the

tentative distance of the k-th vertex in the queue (let us call

it xk for short) and attempts to relax its outgoing edges

based on this value. When the main thread accomplishes

all its relaxations, it notifies the helper threads to stop their

relaxations, and they all proceed to the next iteration. This

execution pattern is illustrated in Fig. 3.

This orchestration by the main thread has a potential draw-

back. It is possible, that at this point a helper thread might

have updated only some of the neighbors of its vertex xk,

leaving the rest with their old, possibly suboptimal, distances.

As explained above, however, this is not a problem since all

neighbors of xk with suboptimal distances will be correctly

updated when xk reaches the top of the priority queue.

B. Efficient Concurrency Control

In our scheme the threads need to access the binary heap

as well as the data structures that implement the graph (lines

10–14 in Alg. 1) in parallel. For efficient concurrency control,

we propose the use of Transactional Memory.

A TM system allows non-conflicting updates, like those

shown in Fig. 1c, to occur in parallel with no overhead. At

the same time, it guarantees atomicity, which means that if

a conflict arises, it will allow one of the threads to update

the heap (e.g. perform the traversal of node i in Fig. 1b)

while the rest will have to repeat their work (e.g. relax

node j in Fig. 1b). To implement this, we enclose each

DecreaseKey operation within a transaction using the ap-

propriate Begin-Transaction and End-Transaction

primitives, as shown in Alg. 2 and Alg. 3 for the main and

helper threads respectively.

In the beginning of each iteration, the main thread extracts

the top vertex from the queue. At the same time, the helper

threads spin-wait until the main one has finished the extraction,

and then each one reads –without extracting– one of the

top k vertices in the queue (implemented by the ReadMin



function). Next, all threads relax in parallel the outgoing

edges of the vertices they have undertaken. Compared to the

original algorithm, a performance improvement is expected,

since, due to the helper threads, the main thread will evaluate

the expression of line 7 in Alg. 2 as true fewer times and thus,

will not need to execute the operations of lines 8–10.

Algorithm 2: Main thread’s code.

while Q 6= ∅ do1

u← ExtractMin(Q);2

done← 0;3

foreach v adjacent to u do4

sum← d[u] + w(u, v);5

Begin-Transaction6

if d[v] > sum then7

DecreaseKey(Q, v, sum);8

d[v]← sum;9

π[v]← u;10

End-Transaction11

end12

Begin-Transaction13

done← 1;14

End-Transaction15

end16

Algorithm 3: Helper threads’ code.

while Q 6= ∅ do1

while done = 1 do ;2

x← ReadMin(Q, tid);3

stop← 0;4

foreach y adjacent to x and while stop = 0 do5

Begin-Transaction6

if done = 0 then7

sum← d[x] + w(x, y);8

if d[y] > sum then9

DecreaseKey(Q, y, sum);10

d[y]← sum;11

π[y]← x;12

else13

stop← 1;14

End-Transaction15

end16

end17

Our scheme employs TM not only for the concurrent

accesses to the various data structures, but for the orchestration

of the helper threads as well. Specifically, when the main

thread completes the relaxations for its vertex, it sets the

notification variable done to 1 within a separate transaction.

This value denotes a state where the main thread proceeds to

the next iteration and requires all helper threads to stop and

follow, terminating any operations that they were performing

on the heap. All helper threads executing transactions at this

point will abort, since done is included in their read sets.

Then they will retry their transactions, but there is a good

chance that they will find done set to 1, stop examining the

remaining neighbors in the inner loop and continue with the

next iteration of the outer loop. If the main thread happens

to perform the ExtractMin operation too quickly, done

will be set back to 0 and the helper threads will miss the last

notification, continuing from the point where they had stopped.

This might yield suboptimal updates to the distances of the

neighbors, but as explained above, these will be overwritten

once the vertices examined by the helper threads reach the top

of the queue. So, correctness is guaranteed.

Employing TM instead of traditional locking primitives, i.e.

locks and barriers, offers two significant advantages: First, it

is too difficult and error-prone to develop a fine-grain locking

scheme for these threads. The programmer would probably

have to use a series of locks in a composable fashion to

guard all the data structures that must be accessed atomically

(lines 7–10 in Alg.2). This is a quite intricate task, since

correctness requires avoiding potential deadlocks or livelocks,

while efficiency requires avoiding serialization of accesses as

much as possible. On the other hand, this functionality is

achieved easily with TM, just by enclosing the critical section

in one transaction, as shown in Alg. 2 and Alg. 3.

Even if such a complex locking scheme was implemented,

it would incur a very high overhead on non-conflicting par-

allel accesses. This would be acceptable if the majority of

concurrent accesses led to conflicts. However, in this work we

show that the opposite is true. Therefore, the optimistic nature

of TM, where non-conflicting accesses are allowed to execute

with no overhead, makes it a better solution.

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

The performance of the proposed scheme was evaluated

through full-system simulation, using the Wisconsin GEMS

toolset v.2.1 [17], [18] in conjunction with the Simics v.3.0.31

simulator [19]. Simics provides functional simulation of a

SPARC chip multiprocessor system (CMP) that boots unmod-

ified Solaris 10. The GEMS Ruby module provides detailed

memory system simulation and for non-memory instructions

behaves as an in-order single-issue processor, executing one

instruction per simulated cycle.

Hardware TM is supported in GEMS through the LogTM-

SE subsystem [20]. It is built upon a single-chip CMP system

with private per-processor L1 caches and a shared L2 cache. It

features eager version management, where transactions write

the new memory values “in-place”, after saving the old values

in a log. It also supports eager conflict detection, as conflicts,

i.e. overlaps between the write set of one transaction and the

write or read set of other concurrent transactions, are detected

at the very moment they occur. On a conflict, the offending

transaction stalls and either retries its request hoping that the

other transaction has finished, or aborts if LogTM detects

a potential deadlock. The aborting processor uses its log to

undo the changes made and then retries the transaction. In our

experiments we used the HYBRID conflict resolution policy,

which tends to favor older transactions against younger ones.

Table I shows the configuration of the simulation framework.

TABLE I: Simulation framework.

Simics Processor
configurations up to 32 cores
UltraSPARC III Cu (III+)

L1 caches
Private, 64KB, 4-way set-associative,
64B line size, 4 cycle hit latency

Ruby L2 cache
Unified and shared, 8 banks, 2MB, 4-way set-
associative, 64B line size, 10 cycle hit latency

Memory 160 cycle access latency

TM System HYBRID resol. policy, 2Kb HW signatures



TABLE II: Graphs used for experiments

random rmat ssca

E Ser. Id. E Ser. Id. E Ser. Id.
(K) (%) Sp. (K) (%) Sp. (K) (%) Sp.

10 52.9 1.89 10 68.4 1.46 28 45.0 2.22

50 62.2 1.61 50 58.8 1.70 60 55.2 1.81

100 50.9 1.96 100 48.3 2.07 118 46.6 2.15

200 40.1 2.49 200 38.0 2.63 177 41.5 2.41

500 28.4 3.52 500 27.3 3.66 590 27.4 3.65

1000 22.6 4.42 1000 22.2 4.50 1157 22.4 4.64

To avoid resource conflicts between our programs and the

operating system’s processes, we used CMP configurations

with more processor cores than the number of threads we

required. At the same time, each thread is bound to a specific

processor to avoid migrations. Finally, all codes were compiled

with Sun’s Studio 12 C compiler (O3 level).

B. Reference graphs

In our evaluation we strived to work on graphs which vary

in terms of density and structure. In that attempt, we used the

GTgraph graph generator [21] to construct graphs with 10K

vertices from the Random, R-MAT and SSCA#2 families.

To obtain an estimate of possible speedups, we profiled the

stand-alone execution of the main thread of our scheme on

each graph to calculate the extent of the sequential part. As

sequential we define the non-transactional part of the code,

which includes mainly the ExtractMin operations. In the

ideal case where the helper threads would manage to offload

all the relaxations of the main thread, the speedup would be
100%

%SerialPart
. Note that this is optimistic, since even in this case

the main thread would still have to check if any relaxations are

required. In general, it constitutes a theoretical upper bound

for any performance improvement and is presented in Table II

for each graph family.

C. Performance results

Fig. 4 presents the speedups achieved by our HT+TM based

implementation of Dijkstra’s algorithm for our graph suite. The

speedup obtained for p threads is the ratio of the execution

time of the serial algorithm to the execution time with p

threads, p − 1 of them being helper threads. The maximum

speedup is 1.84, achieved for 14 threads in Fig. 4f. Considering

the serial nature of the algorithm and the inherent difficulties in

its parallelization, this is a significant performance gain. Note

also that the performance is strongly related to the density

of the graph. In the serial case the execution time can be

estimated as follows:

Tserial = n × O(lg n) + d × n × O(lg n) (1)

where n denotes the number of vertices in the graph and d

the average out-degree of the nodes. The first part of (1) esti-

mates the time spent on ExtractMin operations, while the

second part approximates the time spent on DecreaseKey

operations. Similarly, the execution time of our scheme can

be estimated as follows:

THT = n × O(lg n) + a × d × n × O(lg n), a < 1 (2)

where a the ratio of the main thread’s DecreaseKey op-

erations to those executed in the serial case. This is a simple

estimate and does not take into account the time spent in thread

orchestration or delays due to conflicting transactions. The

speedup s could be approximated by s =
1 + d

1 + a × d
which

implies that s should increase with the average out-degree

and thus, the density of the graph, explaining the results of

Fig. 4. This figure also reveals that the speedup increases as

more threads are utilized. This tendency reaches a maximum

point, after which employing more threads leads to a slight

performance degradation. The number of threads needed to

achieve this maximum, is again related to the graph’s density.

D. Interpretation of the HT scheme’s behavior

In this section, we attempt to gain a better insight into the

behavior of our scheme. We focus our study on one family of

graphs, the rmat, as the other families exhibit similar behavior

and we select only three representative graphs with different

density degrees; low (10K), medium (200K) and high (1000K).

Fig. 5 shows the distribution of DecreaseKey operations

between the main and helper threads and compares them to

those performed in the serial case. As more threads are used,

the main thread’s DecreaseKey operations are reduced,

justifying the performance improvement. However, not all the

helper threads’ operations are useful, as illustrated in Figs. 5b

and 5c, where the total number of DecreaseKeys is greater

than that of the serial case, explaining why the performance

does not keep improving. Interestingly, similar reductions in

the main thread’s operations are also achieved for the sparse

graph, as it is shown in Fig. 5a. However, Fig. 4a shows that

in this case the performance is actually degraded. This can

be attributed to the transactions’ abort rate, which is defined

as the ratio of aborts to commits and is depicted in Fig. 6.

It is obvious, that for the sparse graph, the abort rate is

too high, causing any performance improvements due to the

exploitation of parallelism to be canceled out. However, for

the more dense graphs, the abort rate is significantly reduced

and thus, speedups are achieved. An important observation

though, is that in any case the abort rate of the main thread is

significantly low, which means that it is not obstructed by the

helper threads. This explains the robustness of our scheme, as

in the worst case the slowdown is around 0.95.

The same conclusion can be derived from Fig. 7, where the

execution cycles of the main thread are depicted. The non-

transactional cycles remain stable for each graph, as they rep-

resent the time spent on ExtractMin operations, which are

not affected by our scheme. The addition of helper threads re-

duces the time spent in transactions, i.e. the parallel part of our

scheme, since the main thread executes less DecreaseKeys,

as shown before. The overhead cycles represent the time

spent in aborts or stalls caused by transaction conflicts. This

overhead is relatively small, illustrating once again that the

main thread is not hindered by the helper threads.

To gain a better understanding of the wasted work due to

transaction aborts, Fig. 8 plots the percentage of the total



 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

M
u

lt
it
h

re
a

d
e

d
 s

p
e

e
d

u
p

Number of threads

(a) 10Kx10K

rand-helper
rmat-helper
ssca-helper

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

M
u

lt
it
h

re
a

d
e

d
 s

p
e

e
d

u
p

Number of threads

(b) 10Kx50K

rand-helper
rmat-helper
ssca-helper

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

M
u

lt
it
h

re
a

d
e

d
 s

p
e

e
d

u
p

Number of threads

(c) 10Kx100K

rand-helper
rmat-helper
ssca-helper

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

M
u

lt
it
h

re
a

d
e

d
 s

p
e

e
d

u
p

Number of threads

(d) 10Kx200K

rand-helper
rmat-helper
ssca-helper

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

M
u

lt
it
h

re
a

d
e

d
 s

p
e

e
d

u
p

Number of threads

(e) 10Kx500K

rand-helper
rmat-helper
ssca-helper

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

M
u

lt
it
h

re
a

d
e

d
 s

p
e

e
d

u
p

Number of threads

(f) 10Kx1000K

rand-helper
rmat-helper
ssca-helper

Fig. 4: Multithreaded speedups for graphs of different density.
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Fig. 5: Distribution of DecreaseKey operations between the main and helper threads.
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Fig. 6: Overall and main thread transaction abort rates.

cycles spent by all threads in aborted transactions with respect

to the total number of cycles spent in successfully committed

transactions. Again, for graphs of medium or high density

the amount of wasted work is relatively small, justifying the

observed speedups. On the contrary, a lot of work is wasted

for the sparse graph, explaining the absence of performance

improvements in this case.

In general, the small amount of wasted work shows that

most of the concurrent accesses to the shared data structures

are non-conflicting. The number of aborts depends also on the

size of the transactions’ write sets. The larger the write sets,

the higher the probability of a conflict. Table III presents the

range of the average write set size of all transactions, together

with that of the transactions that envelop the DecreaseKey

operations. Note that the average sizes are quite small, leading

to a low probability for conflicts. These findings confirm that,

due to its optimism, TM is a better approach than locks for the

implementation of our scheme, as explained in Section III-B.

Finally, Fig. 9 compares the cycles the main thread needs

for every 100 iterations of the algorithm’s outer loop for graph
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Fig. 7: Breakdown of main thread’s total cycles: non-transactional (non-xact), transactional (xact) and overhead (xact overhead).
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Fig. 8: Percentage of useful (xact) and wasted (xact overhead) transactional cycles.

Density
Avg. write-set

size

Avg. write-set

size for

DecreaseKey
operations

Max
write-set

size

10K 1.31 - 3.14 12.44 - 20.02 28 - 31

50K 1.16 - 2.07 8.26 - 12.08 29 - 31

100K 1.08 - 1.71 7.84 - 10.79 28 - 30

200K 1.04 - 1.52 7.66 - 9.83 28 - 31

500K 1.02 - 1.20 7.54 - 8.81 27 - 31

1000K 1.01 - 1.12 7.67 - 8.68 29 - 36

TABLE III: Write-set size.

rmat-10Kx200K, when running in parallel with 0, 1, 3 and 13

helper threads. The first observation is that the majority of

the execution time is spent on the first 30% of the iterations.

The second observation is that as the algorithm proceeds, the

available parallelism is reduced and the gains from the use of

more helper threads are negligible. In fact, for the last 20%

of the iterations, the main thread spends the same amount of

time both in the serial case and with 13 helper threads. This

motivates us to explore adaptive schemes, where the number

of helper threads will be dynamically adjusted.

V. RELATED WORK

A significant part of Dijkstra’s execution is spent in updates

in the priority queue. Therefore, enabling concurrent accesses

to this structure seems a good approach to increase perfor-

mance. Brodal et al. [2] utilize a number of processors to

accelerate the DecreaseKey operation and discuss the ap-

plicability of their approach to Dijkstra’s algorithm. However,

this work is evaluated on a theoretical Parallel Random Access

Machine (PRAM) execution model. Hunt et al. [22] implement
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Fig. 9: The timeline of execution.

a concurrent priority queue which is based on binary heaps

and supports parallel Insertions and Deletions using fine-grain

locking on the nodes of the binary heap. Since these operations

do not traverse the entire data structure, local locking leads to

performance gains. However, in the case of DecreaseKey

which performs wide traversals of the data structure it degrades

performance greatly, unless special hardware synchronization

is supported by the underlying platform.

To expose more parallelism, it would be beneficial to

concurrently extract a large number of nodes from the priority

queue. This can be achieved if several nodes have equal

distances from the set S of visited nodes. Thus, if the priority

queue is organized into buckets of nodes with equal distances,

then the extraction and neighbor updates can be done in

parallel per bucket (Dial’s algorithm [5]). A generalization

of Dial’s algorithm called ∆-stepping is proposed by Meyer

and Sanders [3]. Madduri et al. [7] use ∆-stepping as the

base algorithm on Cray MTA-2. In the Parallel Boost Graph

Library [6] Dijkstra’s algorithm is parallelized for a distributed



memory machine where the priority queue is distributed in

the local memories of the system nodes. The aforementioned

approaches are based on significant modifications to Dijk-

stra’s algorithm to enable coarse-grain parallelism and lead to

promising parallel implementations. In this paper we adhere

to the pure Dijkstra’s algorithm to face the challenges of its

parallelization and test the applicability of TM and HT.

TM has attracted extensive scientific research during the last

few years, focusing mainly on its design and implementation

details. Nevertheless, its efficacy on a wide set of real, non-

trivial applications is only now starting to be explored. Scott et

al. [15] use TM to parallelize Delaunay triangulation, Watson

et al. [14] exploit it to parallelize Lee’s routing algorithm

and Kang and Bader [16] employ it for computing minimum

spanning forests of sparse graphs.

VI. CONCLUSIONS - FUTURE WORK

In this work, we attempt to parallelize Dijkstra’s algo-

rithm, which is known to be inherently serial. Our scheme

utilizes the notion of “Helper Threads” (HT) to offload the

main thread by speculatively executing a notable portion of

its DecreaseKey operations. For the implementation, we

choose to employ Transactional Memory (TM), not only for

its ease of programmability, but also for its nature, which

allows to explore any optimistic parallelism inherent in our

scheme. The evaluation revealed that the proposed scheme

is able to provide significant speedups (reaching up to 1.84)

in the majority of the simulated cases. The results further

confirmed the existence of optimistic parallelism, justifying

the selection of TM.

An important outcome of this work is the indication that

the TM mechanism could be efficiently leveraged for the

implementation of speculative multithreading, as it is also

discussed in [23]. We feel that studying the combination of

these two models is extremely important, especially as new

systems are coming that will provide support for TM[12].

As future work, we will investigate the application of this

technique on other algorithms solving the SSSP problem, such

as ∆-stepping and Bellman-Ford. We also aim to explore the

impact of various TM characteristics, such as the resolution

policy, version management and conflict detection, on the

performance of our scheme. Moreover, results demonstrated

interesting variations in the available parallelism between

different execution phases, motivating us to explore more

adaptive schemes in terms of the number of parallel threads.

Finally, we aim to further explore the integration of the

two programming models, namely Transactional Memory and

Speculative Multithreading.
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