Minimizing Completion Timefor Loop Tiling with Computation and
Communication Overlapping

Georgios Goumas, Aristidis Sotiropoulos and Nectarios Koziris
National Technical University of Athens
Dept. of Electrical and Computer Engineering
Computing Systems Laboratory
Zografou Campus, Zografou 15773, Greece
e-mail: {goumas, sotirop, nkoziris} @cslab.ece.ntua.gr

Abstract

This paper proposes a new method for the problem of
minimizing the execution time of nested for-loops using a
tiling transformation. In our approach, we are interested
not only in tile size and shape according to the required
communication to computation ratio, but also in overall
completion time. We select a time hyperplane to execute
different tiles much more efficiently by exploiting the inher-
ent overlapping between communication and computation
phases among successive, atomic tile executions. We assign
tiles to processors according to the tile space boundaries,
thus considering the iteration space bounds. Our schedule
considerably reduces overall completion time under the as-
sumption that some part from every communication phase
can be efficiently overlapped with atomic, pure tile compu-
tations. The overall schedule resembles a pipelined datap-
ath where computations are not anymore interleaved with
sends and receives to non-local processors. Experimental
results in a cluster of Pentiums by using various MPI send
primitives show that the total completion time is signifi-
cantly reduced.

Index Terms—Loop tiling, communication overlap-
ping, supernodes, hyperplanes, MPI send-receive primi-
tives.

1 Introduction

One of the most difficult areas in the field of parallel
computing is the automatic loop parallelization and efficient
mapping onto different parallel architectures. The key issue
in loop mapping is to mitigate communication overhead by
efficiently controlling the computation to communication
grain. In distributed memory machines, explicit message
passing incurs extra time overhead due to message startup

latencies and data transfer delays.

In order to eliminate the communication overhead,
Shang [9], Hollander [5] and others, have presented meth-
ods for dividing the index space into independent sets of
iterations, which are assigned to different processors. How-
ever, in many cases, independent partitioning of the index
space is not feasible, thus data exchanges between proces-
sors impose additional communication delays. When fine
grain parallelism is concerned, several methods were pro-
posed to group together neighboring chains of iterations,
while preserving the optimal hyperplane schedule [7], [3].

As far as coarse grain parallelism is concerned, re-
searchers are dealing with the problem of alleviating the
communication overhead by applying the supernode or
tiling transformation. Under this scheme, neighboring it-
eration points are grouped together to built a larger compu-
tation node that can be atomically executed without any in-
tervention. Data exchanges are also grouped and performed
with a single message for each neighboring processor, at the
end of each atomic supernode execution. Supernode parti-
tioning of the iteration space was proposed by Irigoin and
Triolet in [6]. In their paper Ramanujam and Sadayappan
[8] showed the equivalence between the problem of find-
ing a set of extreme vectors for a given set of dependence
vectors and the problem of finding a tiling transformation H
that produce valid, deadlock-free tiles. The use of a com-
munication function that has to be minimized by linear pro-
gramming approaches was used by Bouletetal. in [2]. They
calculated the total communication produced by a tile as a
function of its sides and shape and proved that the mini-
mization can be done independently of the tile volume.

Nevertheless, all above approaches ignore the actual iter-
ation space boundaries. Although tile shape is of great im-
portance to communication reduction, the objective should
be the overall tiled space completion time. Hodzic and
Shang [4] proposed a method to correlate optimal tile size

and shape, based on overall completion time reduction.
They consider supernode transformations where data ex-
changes are between neighboring successive tiles. In this
context, the tiled space is considered as a new iteration
space with unitary dependencies. They applied the hyper-
plane transformation to these loop tiles and generated a
schedule where the objective is to reduce the overall time
by adjusting the tile size and shape appropriately. Each
processor executes all tiles along a specific dimension, by
interleaving computation and communication phases. All
processors first receive data, then compute and finally send
result data to neighbors in explicitly distinct phases, accord-
ing to the hyperplane scheduling vector.

In this paper we propose an alternative method for the
problem of scheduling the tiles to processors. Each atomic
tile execution involves a communication and a computation
phase and this is repeatedly done for all time planes. We are
compacting this sequence of communication and computa-
tion phases, by overlapping them for the different proces-
sors. The proposed method acts like enhancing the perfor-
mance of a processor’s datapath with pipelining, because a
processor computes its tile at &£ time step and concurrently
receives data from all neighbors to use them at & + 1 time
step and sends data produced at k£ — 1 time step. Since data
communications involve some startup latencies, we adjust
the computation grain to make room for this overhead and
try to overlap with all communication, which can be done in
parallel. The time hyperplane that allows for such overlap-
ping is determined by the bounds of the tiled space. Specif-
ically, the dimension with the larger boundary defines the
processor mapping, thus all tiles along this dimension are
mapped to the same processor. Previous work in the field of
UET-UCT scheduling of grid graphs in [1], has shown that
this schedule is optimal when the computation to commu-
nication ratio is one.

The rest of the paper is organized as follows: Basic ter-
minology used throughout the paper and definitions of loop
tiling are introduced in Section 2. In Section 3 we an-
alyze the properties of the non-overlapping optimal time
schedule of tiles, whereas in Section 4 we introduce the
pipelined approach of an overlapping time schedule.In Sec-
tion 5 we present the experimental results by implementing
both scheduling approaches to various problems using MPI
primitives. Finally, we summarize our results and propose
future work.

2 Models—Loop Tiling
2.1 TheModed of the Algorithms
In this paper we consider algorithms with perfectly

nested FOR-loops and constant loop carried data depen-
dencies. That is, our algorithms are of the form:

FOR #1=l; TOu; DO

FOR i,=l,, TO u,, DO
AS(3)

AS;(7)
ENDFOR

ENDFOR

where: (1) I; and u; are integer-valued constants, meaning
that the iteration set is a parallelepiped/multidimensional
rectangle, (2) i« = (i1,...,in) and (3) ASy,..., ASy are
assignment statements of the form vV, = E(V4,...,V)),
where Vj is an output variable indexed by i and produced
by expression E operating on input variables V7, ..., V},
also indexed by i.

2.2 Notation

Throughout this paper the following notation is
used: N is the set of naturals, Z is the set of in-
tegers, n is the number of nested FOR-loops of the
algorithm and m is the number of dependence vec-
tors of the algorithm. J™ C Z™ is the set of indices:
Each point in this n-dimensional integer space is a distinct
instantiation of the loop body. A dependence vector is
denoted d; = (d;1,-..,din),1 < i < m. The dependence
set D of an algorithm A is the set of all dependence vectors
of this algorithm: D = {d;;,d;»,...,d,,}. Notice that all
dependence vectors are considered uniform and constant,
i.e. independent of the indices of computations.

2.3 Supernode Transformation

In a supernode transformation the index space J ™ is par-
titioned into identical n-dimensional parallelepiped areas
(tiles or supernodes) formed by n independent families of
parallel hyperplanes. Supernode transformation is defined
by the n-dimensional square matrix H. Each row vector of
H is perpendicular to one family of hyperplanes forming
the tiles.

Dually, supernode transformation can be defined by n
linearly independent vectors, which are the sides of the su-
pernodes. Matrix P contains the side-vectors of a supern-
ode as column vectors. It holds P = H ~!. Formally su-
pernode transformation is defined as follows:

ri) =gty |

where | Hj| identifies the coordinates of the tile that index
point j(j1,j2,- - -, jn) ismappedtoand j—H | Hj| gives
the coordinates of j within that tile relative to the tile origin.
Thus the initial n-dimensional index space is transformed
to a 2n-dimensional one, the space of tiles and the space
of indexes within tiles. Indexes within tiles have to be se-
quentially executed, while tiles themselves can be assigned
to processors and executed in parallel according to a valid
hyperplane schedule as we will see in Sections 3 and 4. The
tiled space J° and the supernode dependence matrix D~
are defined as follows: J = {j°|j° = |Hj|,j € J"},
D% = {d°|d° = |H(jo +d)],d € D,jo € J"0 <
| Hjo| < 1} where j, denotes the index points belonging
to the first complete tile starting from the origin of the in-
dex space J™. The tiled space can be also written as J° =
56T li? € ZA1E <P <uf,1 <i < n}.
Each point j° in this n-dimensional integer space J* is a
distinct tile with coordinates (57, j5, ..., j5).

Given an algorithm with dependence matrix D, for a
tiling to be legal, it must hold HD > 0. This ensures that
tiles are atomic and that the initial execution order is pre-
served [6], [8]. In the opposite case any execution order of
tiles would result in a deadlock.

In this paper we assume that all dependence vectors are
smaller than the tile size, thus they are entirely contained
in each supernode’s area, which means that |HD| < 1
[12] or alternatively that the supernode dependence matrix
D? contains only 0’s and 1’s. This assumption is quite
reasonable since dependence vectors for common problems
are relatively small, while tile sizes may result to be orders
of magnitude greater in systems with very fast processors.
So, for a computation to communication grain to be mean-
ingful tiles are large enough to encapsulate all dependence
vectors. In this case every tile needs to exchange data only
with its nearest neighbors, one in each dimension of .J ™.

2.4 Computation Cost - Communication Cost

The number of index points contained in a supernode
expresses the respective computation cost of this supern-
ode (tile), and is calculated by det(P). Thus we have
Veomp = det(P). The communication cost of a tile is pro-
portional to the number of iteration points that need to send
data to neighboring tiles, in other words, the sum of depen-
dence vectors cutting the supernode’s boundaries. This can
be calculated by the expression:

1 n n m
‘/rcomm(H) = m Zzzhi,kdk,j (1)

i=1 k=1 j=1

Practically this formula computes and sums all possible
h;d;, which express the contribution to communication of
every dependence vector, to every tile boundary surface.

If tiles along the same dimension are mapped to the same
processor, dependence vectors cutting the tile’s boundary
surface in the respective dimension impose no interproces-
sor communication. In that case, the communication cost is
calculated by the expression:

Veomm (H) =

1 2
TTEL D] 2oi€ {1y — L1y brj€ {1y} (H =2 D)i g

where H_, denotes the H matrix with the column vector
vertical to the boundary surface in the dimension of proces-
sor mapping extracted. A technique, presented in [2] and
[11], calculates the vector H that imposes the minimum
amount of communication for a given supenode size.

2.5 Scheduling of Tiles

If HD > 0, tiles are atomic and preserve the initial ex-
ecution order. Consequently the tiled index space J* can
be scheduled using similar technigues to the initial index
space J". In this paper we use linear schedules. Recall
([10]) that a point j € J™ scheduled according to a linear
time schedule II, will be executed at ¢; = L%gﬁ) |, where
to = —minlli:i € J" and dispIl = minlld; : d; € D.

Thus, atile j5 € J will be executed at ¢ js = LHC{Z;[O

2.6 Architecture

We discuss tiling and scheduling techniques for systems
using message-passing environments (e.g. MPI) for inter-
processor communication. Every processor has instant ac-
cess to its local memory and in order to communicate with
other processors it sends messages through an interconnec-
tion network. The time needed for a single computation is
denoted by t., the communication startup time by ¢ (also
denoted ts44,tup N this paper), the transmission time per
byte by t;, and the number of bytes per node data by b.
There are two important parameters in the underlying archi-
tecture affecting the tiling process: The processor’s com-
putation speed, which affects the optimal tile size and the
system’s communication startup time and transmission time
which affects the optimal tile shape.

3 Non-overlapping Schedule

In [4], Hodzic and Shang have presented a scheme for
scheduling loops that have been transformed through a su-
pernode transformation. The optimal tile size g that mini-
mizes total execution time is determined by the actual par-
allel architecture parameters i.e. communication to compu-
tation grain. Given the tile size, they calculate the optimal
tile transformation H that reduces communication cost for

each tile. The rows of matrix H determine the actual tile
shape. Relative sizes for tile sides and shape are defined by
the dependence vectors of the algorithm, whereas tile vol-
ume (size g) is defined by the hardware parameters. Once
H is fully determined, it is applied to the original index
space. The resulting tiled space J < is scheduled using a lin-
ear time hyperplane II. All tiles along a certain dimension
are mapped to the same processor. Total execution of tiles
consists of successive computation phases interleaved with
communication ones. A processor receives the data needed
to execute a tile at time step 7 performs the computations
and sends to its neighboring processors the boundary data,
which will be used for tile calculations in time step 7 + 1.
Thus the total execution time is given by:

T = P(g)(Tcomp + Teomm),)

where Tcomm = Lstartup + Ttransmitv P(g) is the num-
ber of time hyperplanes needed to execute the algorithm,
Tomp the execution time of atile (Tcomp = gtc) and Teomm
the communication time. T, can be expressed as the
communication startup latency (Z'stqr+up), and a factor ex-
pressing the transmission time (T qnsmit). Clearly the to-
tal execution time depends on tile size g, since it affects the
number of time planes (increase of tile size ¢ leads to reduc-
tion of total time planes), the computation cost (¢t .) and the
communication volume (Veomm)-

Let us now consider the implementation of the above
schedule in a message passing environment. In this context
the execution time of a computation and a communication
phase consists of: the transmission time of the data to be
received (Ttransmit), the receive startup time T'szqptup, the
computation time T'compute, the send startup time Tsortup
and the send transmission time(7,qnsmi) (Fig. 4).

The overall parallel loop execution consists of atomic
computations of tiles interleaved with communication for
the transmission of the results to neighboring processors.
Since the tiled space J° has only the unitary dependence
vectors (see subsection 2.3), the optimal linear time sched-
ule can be easily proved to be: IT = [1 1...1]. In Fig. 1,
the nonoverlapping schedule is shown for a tiled space
using six processors. Each time step between successive
hyperplanes contains a triplet of receive-compute-send
nonoverlapped subphases for each tile. All tiles along the
same dimension are mapped to the same processor.

Example 1
Consider the following algorithm:
for i;=0 to 9999
for i2=0 to 999
A(’il,’iz):A(’il — 1,2 — 1)+A(’i1 — 1,i2)+A(i1,i2 — 1)
endfor
endfor

J? = {(i1,i2) + 0 < ip < 9999,0 < iy < 999}, D =

<0

o0,

IS

w07

~. | receivk(data,p1)

E T S o - <
"'”P.:\'”*'”*\'”>.\'”>.\

V0,7

-

t ta t3 (i T 1o

PZ ‘receive‘compute‘ send \ | receive | compute| send | receive | compute| send
P3 ceive | compute | send \ | receive | compute | send
FZ ceive | compute | send
F’2 ‘ compute ‘ comm. compute comm. compute comm.
F’3 compute comm. compute comm.
P, Xcompute comm.

Figure 1. Nonoverlapping time schedule

{(1,1),(1,0),(0,1)}. Suppose that for the target architecture
it holds t. =~ 1lusec (see experimental results in Section 5),
ts = 100t. (reasonable assumption since ¢, < ts, see Section 5)
and t; = 0, 8t./byte (i.e. Ethernet 10Mbps). Then according to
expression (11) in[4], g = % which gives the optimal tile size in
two dimensions, we have g = 100 (¢ = 1, the number of neigh-
boring processors). Communication volume calculated by formula
(2) is Veomm = 20 and each data size is b = 4bytes (float). Con-
Sequently Tcomp = gtc = 100tc: Tcomm = startup+Ttransnzit-
We have two startup latencies, one for each send and receive
performed, thus Tstartup = 2 X ts = 200tc. Tiransmit =
bVeommts = 20 x 4 x 0, 8t.. We optimally choose square tiles
0.1 0
0 0.1
be: J¥ = {(i7,i5) : 0 < if < 999,0 < 5 < 99}. Since
the maximum value for i7 is 999, thus greater than the maximum
value for 45, we map along 7. The optimal scheduling vector
for this algorithm is II = (1,1) and so the schedule length is
P =T11(999,99) — I1(0,0) + 1 = 999 + 99 + 1 = 1099. The
total execution time given by formula (3) is 7 = 1099(100¢, +
200t +20x4x0, 8t.) = 1099 x 364, = 400036t. = 0.4 secs.
In this example, we assume T;yqnsmit as the overall transmission
time for a complete send-receive pair. We could have splitted it
into two pieces as well, without any effects on the results.

with side length 10 (H =

}). The tiled space will

4 Overlapping Schedule

The linear schedule presented in the previous section
achieves a moderate processor utilization. All processor
nodes are concurrently either computing or communicat-
ing their results to their neighbors. However, what really
imposes such inefficient processor utilization, is the data
flow between succesive time steps. Specifically, it seems
that computations and respective communication substeps
for each time step should be serialized to preserve the cor-
rect execution order. Every processor should first receive
data, then compute and finally send the results to be used at
the next time step by its neighbor (Fig. 3).

It would be ideal if a node was able to receive, compute
and send data at the same time. Modern computers have
DMA engines and network interfaces (NICs) that can work
in parallel with the CPU. This means that some commu-
nication work can be overlapped with actual CPU cycles.
In addition to this, non blocking message passing prim-
itives mitigate processor waits for the completion of the
respective messaging operations. In fact, even some non-
blocking work needs the CPU, but most of kernel buffering
(TCP/IP stacks) and the transmission phase can be ideally
overlapped with other useful computation. A much more
thorough look at the correct data flow in the nonoverlap-
ping case, reveals the following interesting property: If we
slightly modify the initial linear schedule, then we could
overlap some communication time with computations. This
means that, in each time step, the processor should send and
receive data that is not directly dependent to the data com-
puted at this step. A valid time execution scheme would
be for a processor to receive data from all neighbors to use
them at k& + 1 time step, send data produced at previous time
step (k — 1) and compute its results (Fig. 3 and Fig. 2).

In [1] a linear hyperplane for the optimal time schedul-
ing of Unit Execution Times-Unit Communication Times
grid task graphs was presented. Grid graphs are like it-
eration spaces with unitary dependence vectors. Consid-
ering UET-UCT model, it is like having communication
phases that need equal time to computation ones. In [1], it
was also proven that the optimal space schedule for UET-
UCT was to assign all points along the maximal dimen-
sion to the same processor. The analogy of equal com-
putation to communication times with our case is obvi-
ous. If we could achieve a computation to communica-
tion grain g, so that the time needed to communicate with
the others is equal to the time needed for the CPU to
compute, then we could apply this slightly modified lin-
ear schedule and the respective space schedule. The opti-
mal time schedule for tile 55 (57, 55, ..., j5) in this case is
257 4+ 255 + ...+ 255 + 250 +...+ 245 + 57, where
1 is the dimension along which all tiles are mapped to the
same processor.

k=1 k k+1 k+2

B I compute__ compute compute compute
2 |

send] receive ™ send | receive | send] receive

—_compute—__

receive

send | receive
compute

R

R

receive

Figure 2. Overlapping time schedule

In Fig. 2 the overlapping scheduling is shown. Consider,
for example, processor Ps at k time step: while it makes the
computation for a tile, it concurrently performs the follow-
ing: sends the results produced during &£ — 1 time step and
receives data from neighbors, to be used during the compu-
tation of the next tile at £+ 1 time step. Note the arcs shown
in Fig. 2. They depict the actual flow of data between suc-
cessive time steps (computes-sends-receives) in pipelined
way. The outcome of this schedule is to have successive
computations overlapped with communication phases, thus
theoretically 100% processor utilization.

Processor 1 Processor 2 ..---

{MPI_*send: | CMPI_*recy”
R N N e N s d@b —o |
MPI (user) space | S MPlLbuffers | MPI_buffers

Kernel (OS) space

: kernel buffers
[ens— s Y) : . [e—]
send ™. i receive

transfer through network media

Figure 5. MPI (user) and kernel (OS) space

4.1 Implementation on a Message-Passing Envi-
ronment

In a message-passing environment like MPI, a processor
first initiates all nonblocking receive operations, then per-

@)

lReceive(dala,k—Z) Compute(data,k-2) ~ Send(data,k-2)

Receive(data,k-1) ~ Compute(data,k-1) Send(data,k-1)

Send(datak-2) | Receive(data,k)

(b)

Compute(data,k-1) Send(data,k-1) Receive(data,k+1)

Receive(data,k) Ci k) Send(data,k)

Compute(data,k)

Send(data,k)

Receive(data,k+2)

Receive(data k)
k-1)

(© ce

Receive(data,k+1)

ita,k—2) Ci K Receive(data,k+2)

Send(data,k-1) [Compute(data,k+1)

Send(data,k)

Compute(data,k+1)

f——— Time passed with ideal Overlapping —

|~———————————————— Time passed with Communication and Computation Overlapping—————————#]

F Time passed without Overlapping 1

Figure 3. Various levels of computation to communication overlapping

l Tsend [Tcompute [

Treceive]

(a) l Tstarlup 1 :rtriinsmit l

B J Treceive [Tstartup

[Tritl_met buffer | Till_kernel buffel

[Thill_kernel buffe] Thill_mPt_buffer |

| Treceive

|TfiII_MPI_bufferrrfill_kernel_buffer| Tcompute

|Tfill kernel bufferl Tfi"_MF’l_buffer| Tiransmit

V

A (e |2

Tfl|| MPI_buffer

()

Tcompute

3T (receive)
fill_MPI_buffer

1 (receive)
B Treceive |Tfill kernel buff

(send) |4
el Tfl|| kernel _buffe

Ttransmlt

Figure 4. Analysis of atime step

forms the actual atomic tile computation and finally initi-
ates all the nonblocking send operations. While it computes
the tile iterations, it may receive data from neighbors and
send previously computed data to others as well. Since all
primitives are nonblocking, the issue of a send call, for ex-
ample, requires for processor attention, only to fill the MPI
system send buffer. After that, the control returns to the
processor which executes the rest of the program, thus the
computation of the tile. The same goes for the nonblocking
receive. Once such a call is issued, an MPI receive buffer
is prepared and the control returns immediately to the pro-
gram to continue its execution with the next command. As
long as the message arrives to the kernel, it is copied from
the kernel buffer to the receive buffer and then it is ready to
be used (Fig. 5). Actually, since the underlying layers re-
ceive the message before the actual issue of the receive call
in user program, we put all receives at the end of each send-
compute-receive triplet. In a similar way, we perform all
sends at the begining of the above triplet, so that all sends
are initiated the earliest possible time.

It seems that the initial preparation of both receive and
send MPI system buffers is an unavoidable computation
time. However, with the aid of a DMA engine, or so, the
copy of the data to be sent to the kernel buffer, or the copy

of the received data from the kernel buffer to the receive
MPI buffer can be overlapped with computations. In ad-
dition to this, for long messages, transmission time is also
of additional overhead, which can be also overlapped. An
ideal scheme is shown in Fig. 3b and the respective analysis
for each time step in Fig. 4b. If we ideally assume send and
receive overlapping too (e.g. DMA support for multichan-
nel 1/0), then Fig. 3c shows the time compaction achieved.

According to the above, we have:
T = P(g) max(A1 + A2 + Ag,Bl + B2 + B3 + B4) (4)
since the time hyperplane is so, that either computation or
overlapped communication prevails. As shown in Fig. 4,

Ajy: time for the MPI system to fill the MPI buffer for
send operation (T}ff,”j@m buf for)

A, time for computation (Tcompute)

Ajz: time for the MPI system to fill the MPI buffer for
receive operation (T}ff,cj}”;} buf for)

By time to receive data (receive side) (T'eceive)s

Bs,: time for the OS kernel to fill a kernel buffer for re-
ceive operation (7' (receive) - buf fer):

Bs: time for the OS kernel to fill a kernel buffer for send

(send)

Operatlon (szll kernel - buffer)

By, time to transmit data (send side) (Tt ansmit)-

We assume that the overall transmission is splitted into the
sender side transmission time and the receiver side receive
time, By and By, respectively. From experimental results
using MPICH (see Section 5), we derived that all 4;, B;
depend on the size g, thus A;(g), Bi(g). In the overlapping
case, the optimal P(g) is given by 2uy +2us +. . .+2u |+
2ufy + ...+ 2uf 4+ ui, where (uf,u3,...,us) are the
coordinates of the “last tile” of the tiled space .J°, assum-
ing (0,0, ...,0) are the coordinates of the first tile and 7 is
the largest dimension (see [1]). We have the following two
cases:

1. the non-avoidable initial startup time for all sends and
receives plus the net computation time are bigger than
the rest communication and transmission time:

If Ay + As + Az > B1+BQ+B3+B4then(4)
becomes:

T(g) = P(g)(A1 + Az + A3) (5)

From LEMMA 1 in [4], it holds P(g) = Pog /™, thus
we have T'(g) = Pog~"/"(A1 + A3 + gt.) = T(g) =
Po(A1(g) + As(g))g~/™ + Poteg™ . We obtain the
optimal overall time when T"(g) = 0. In Section 5 we
use the experimental values for g, since there isn’t any
analytical formula for A, (g), As(g).

2. the non-avoidable initial startup time for all sends and
receives plus the net computation time are less than
than the rest communication and transmission time:

If Ay + As + Az > B1+BQ+B3+B4then(4)
becomes:

T(g) = P(g)(By + B> + Bs + By)

As in L41] transmission time is By = By =
bt Vog™= and thus T(g) = Pog Y/"(By(g9) +
By(9)+2bt,Vog™=) = T(g) = Po(Ba+Bs)g~'/"+
2P0bttVOg"sz. We obtain the optimal overall time
whenT'(g) = 0.

Example 2

The pipelined data flow in the overlapping case works as follows
(Fig. 2): Data computed from processor P, at k — 1 time step,
are send to Ps during k time step, received by Ps in the same
k time step, and then computed during k& + 1 step, from the
same processor. Next, at k& + 2 time step, processor P; sends the
previously computed results to Py, to be received until the end of
the k& + 2 step.

Example 3
Consider the algorithm of Section 3 where now the optimal
scheduling vector is (1,2). As we will see in Section 5, a re-
alistic assumption can be that of Tf;y_rmrprbuffer = %ts, and

Trin_srprvuffer + Triti_kerneibuf fer = Tstartup WE have one
send and one receive in each time step along 7> dimension. The
schedule length now is P = TI(999,99) — I1(0,0) + 1 =
999+2x99+1 = 1198. Since B1+ B>+ Bs+ B4 = 50t.+50t.+
20x0.4%x0.8tc < A1+ A2+ Az = 50t +50¢. + 100¢., the total
execution time is now 1198(25t. + 25t + 100t.) = 179700t. =
0.24 secs, much less than the nonoverlapping case (0.4 sec). If
we adjust g so that A, + As + A3 = B1 + B> + B3 + By,
thus complete overlapping, we could achieve a much better result.
It is obvious that a greater g would increase the ammount of data
needed to be communicated and reduce the number of hyperplanes
P(g), while also increasing gt.. On the other hand, a smaller g
would decrease the ammount of data needed to be communicated
and increase the number of hyperplanes P(g), while also decreas-
ing gt.. In Section 5 we experimentally tune tile size g to reach
optimal result for the overall completion time.

5 Experimental results

We run our experiments on cluster with 16 identical
500MHz Pentium nodes. Each node has 128M of RAM
and 10G hard drive and runs Linux with 2.2.14 kernel ver-
sion. We used MPI (MPICH) to run the experiments over
the FastEthernet.

TIME
k-1 k k+1

receive(from_proc(i—1,j), k)
receive(from_proc(i,j-1), k)

receive(from_proc(i—1,j), k+1)
receive(from_proc(i,j-1), k+1)

receive(from_proc(i-1,j), k+2)
receive(from_proc(i,j-1), k+2)

compute(proc(i,j), k-1)

compute(proc(i,j), k)

compute(proc(i,j), k+1)

send(to_proc(i+1,j), k-2)
send(to_proc(i,j+1), k-2)

send(to_proc(i+1,j), k-1)
send(to_proc(i,j+1), k—1)

send(to_proc(i+1,j), k)
send(to_proc(i,j+1), k)

receive(from_proc(i,j-1), k+1) -

receive(from_proc(i-1,j), k+1)

Wi send(to_proc(i+1,j), k-1)

~—— send(to_proc(i,j+1), k-1)

receive(from processor, time to be used)
send(to processor, time produced)

Figure 6. Timing and extra buffering for the
overlapping case

Our test application is a simple loop with only one as-
signment statement i.e. A(i,7,k) = JAGE—1,5,k) +
VA(i,j—1,k) + \/A(i, 5,k — 1). We used square roots
and floats to increase ¢. at a reasonable value. The opti-
mal tiling is in rectangular tile shapes. Each tile is a cube

with ij, ik and kj sides. We selected & dimension to be the
largest one, so all tiles along k-axis are mapped to the same
processor P;,i = (0,...,15). During each time step, ev-
ery processor in the 45 plane with coordinates (i, j) receives
from neighboring processors (i — 1, 7) and (¢, — 1), com-
putes and sends to processors (i + 1,7),(¢,j + 1) In order
to achieve overlapping of computation and communication,
we need extra space, besides the tile space, on each node in
order to buffer the surfaces that are received or being sent
to every neighboring node, while changing the data during
the computation of (4, j, k) tile (Fig. 6).

The most common message-passing primitives are called
blocking primitives (synchronous primitives). When a pro-
cess calls a send routine, it specifies a buffer and a desti-
nation to send it to. While the message is being sent, the
sending process is blocked (i.e. suspended). The instruction
following the call to send is not executed until the message
has been completely sent, as shown in Fig. 7. Similarly, a
call to receive does not return control until a message has ac-
tually been received and put in the message buffer, pointed
to by the parameter of the receive call.

| Process \
I blocked |

Process running

Process running

I VU W W

msg is copied msg is copied
to MPI buffer |to OS kernel buffer|

send initiated Trap to kernel, Return from trap

Time
Figure 7. Blocking send primitive

An alternative to blocking primitives are nonblocking
primitives (sometimes called asynchronous primitives). If
send is nonblocking, it returns control to the caller imme-
diately, before the message is sent. The advantage of this
scheme (Fig. 8) is that the sending process can continue
computing in parallel with the message transmission, in-
stead of having the CPU go idle

Process

blocked
Process running Process running
msg is copied msg is copied
to MPI buffer |to OS kernel buffer|

send initiated Trap to kernel, Return from trap

Time
Figure 8. Nonblocking send primitive

The send part of the receive-compute-send triplet (Fig. 4)
is divided to the startup part and the transmission part.
The startup part itself can be divided to the writing of
MPI buffer on behalf of the MPI_Send command and the

0.7

"blo_16x16x16384" —
"nonblo_16x16x16384"

0.6

Time (sec)

0.4
0.376637 b

0.233923

0.2 i ing-ti 444

0.1

500
1000
1500
2500
3000
3500
4000

Figure 9. Results for 16x16x16384 space

reading of the MPI buffer on behalf of the kernel. That
means that the white part of the unfolded triplet can be
overlaped. So we increase the Tompute part and try to

- (receive) (send)
fit the Tocceives Trint_kernet_buf fers L fitl_kernel_buf fer aNd

d
Tiransmit Parts under the T}ffl’_‘l\}m_buf fers Teompute and

(receive)
Tsiti_MPI_buf fer PATES. _ _
The pseudocode for the blocking case is:

for i = 0 to max_1i tile-1
for j = 0 to max_j_tile-1
ProcB(i,])

where: ProcB (i, 7j) is

for k = 0 to max_k tile-1

{
MPI _Recv(T(i-1, j), results(T(i-1, j), k))
MPI Recv(T(i, j-1), results(T(i, j-1), k))
compute () ;
MPI_Send(T(i+1, j), results(T(i, j), k))
MPI_Send(T (i, j+1), results(T(i, j), k))

1

While the pseudocode for the nonblocking case is:
for i = 0 to max_i_tile-1
for j = 0 to max_j_tile-1

ProcNB (i, J)

where: procNB (i, §) IS

for k = 0 to max_k tile-1

{

MPI_ Isend(T(i+1, j), results(T(i, j), k-1), &sl)
MPI Isend(T(i, j+1), results(T(i, j), k-1), &s2)
MPI Irecv(T(i-1, j), results(T(i-1, j), k+1), &rl)
MPI Irecv(T(i, j-1), results(T(i, j-1), k+1), &r2)
compute () ;

MPI Wait (sl1);

18 T T T T -
"blo_16x16x32768" ————
“nonblo_16x16x32768" ------—-

1.6

1.4

1.2

|

Time (sec)

0.9 ; g ti 00

0.8 —

N e
0.694516 T
,

0.6 f+

0.5 [y g s S
0.467927 NS

0.4 min:-nonblocking- tim 5

&

500
1000
1500
4000
4500
5000

73000
3500

Figure 10. Results for 16x16x32768 space

MPI Wait (s2);
MPI Wait (rl);
MPI Wait (r2);

}

The experiments were concerning a 16 x 16 x 16384
space, a 16 x 16 x 32768 and a 32 x 32 x 4096 space, where
A x B x C represent the boundaries of i, j, k axes respec-
tively. The tiled space will have £ as larger dimension, so
mapping all tiles to the same processor is performed along
the k-axis. For every of the above three problems, we were
using all 16 processors, that is 4 processors for each i, j di-
mension. This means that all tiles, for example in the first
case, were having sizes of 4 x4 x 1V where V was a variable
(V' is denoted as tile height, since it is the size of tile along
axis k). For all possible values of V, ranging from 4 to
@, we ran both complete non overlapping and overlap-
ping MPI programs, and calculated the size of V,ptima for
which the minimum completion time (¢ optimar) i achieved.
Figures 9, 10 and 11 summarize our results.

We compare the experimental results with the theoretical
ones calculated from formula (5). From the analysis of Sec-
tion 4, the optimal grain for the overlapping case depends
on the ¢, for each iteration of the initial /™ and T4t yp. TO
calculate the ¢. we ran 1000 iterations of the loop in a single
node, and calculated the overall time. By dividing it to the
number of iterations, we calculated ¢. = 0.441 psec. Actu-
aly, from formula (5), we also need the T'rii_nrpi_suffer
for both MPI non_blocking sends and receives. For the
calculation of T'riy_nrpr_bugrer We Wrote a simple pro-
gram with 10.000 successive non blocking sends from the
one node to another using immediate (MPI Ireceive), so
that the receiver posts the receives without causing any de-

"blo_ 32x32x4096" —
“nonblo_32x32x4096" —————

0.8

0.6

0.5 i i i 128

- g
0.4 v/ /
0.324069

0.3

Time (sec)

0.219059 |- R
0.2

min nonblocking time @ 164

0.1

o

= S
8 8 8
3 g 23
“Tile Height™

2000
2500

Figure 11. Results for 32x32x4096 space

lays. Each time, the size of the message sent was equal to
the data transmitted from one tile to another, for tile sizes
AXAXVoptimai- We used (MPI_Isend) for the send primitive.
This was done to simulate, as close as possible, the behav-
ior of the T'sii_mpr_supser IN the complete program. As
far as the tile size is concerned, we use the optimal size we
obtained from the experiments. At last, we need the number
of hyperplanes for the particular tile size. This is calculated
by the expression: P(g) = 2 X imaz +2 X jmaz + pr*:;:al .

For the first experiment (Fig 12i) the iteration space J "
is {(i,7,k)[0<i< 16, 0<j< 16, 0< k< 16384}, the re-
spective tiled space J° is {i®, j% k5| 0<i® <4, 0<j% <
4, 0<kS <V}, where V ranges from 4 to 18382 From the
experimental results (see Fig. 9), the optimal overall com-
pletion time is achieved for gezperimentar = 4 x 4 x 444,
thus Vegperimentar = 444. For the first experiment, we
use a packet size of 7104 bytes for ij or ik tile sides when
V' = 444, to calculate Tfill_MPI_Buffer = 0.627 msec,
and t. is equal to 0.441 usec. The respective optimal
completion time was found to be 0.233923 sec. On the
other hand, if we calculate the number of hyperplanes
P(g) corresponding t0 gegperimentar = 4 X 4x 444, it is
P(geperimentat) = 2x4 4+ 2 x4 4 18381 ~ 53 We
assume that T¢ii_vpr_pupser TOr MPLIrecv is the same
as for MPI_lsend. If we apply the experimental values
for the parameters g,t., Triu_mpr_suffer 10 (5), the the-
oretical overall completion time for the overlapping case is
P(geacperimental) X (4 x 0.617 + Gexperimental X 0.441 x
10~%)msec = 0.24sec, which differs to the overall exper-
imental measured completion time 2.5%. Notice in Fig 9
that the optimal completion time for the non-overlapping
case is 0.376637sec. Thus the overlapping technique offers

a 30% improvement in total execution time. The results for

index set size

. . 16 x 16 x 16384 16 x 16 x 32768 32 x 32 x 4096
(i X xk)
Voptimal 444 538 164
Joptimal 7104 8608 10996
toptimal
overlapping 0.233923 sec 0.467929 sec 0.219059 sec
experimental
Trin_MPIbuf 0.627 msec 0.745 msec 0.37 msec
P(g) 53 76 41
toptimal
overlapping 0.24 sec 0.507 sec 0.25 sec
theoretical
difference
experimental vs. 2.5% 7% 12%
theoretical
toptimal
non-overlapping| 0.376637 sec 0.694516 sec 0.324069 sec
experimental
improvement
overlapping vs. 38% 33% 32%
non-overlapping

Figure 12. Experimental Results

6 Conclusions— Future Work

In this paper we proposed a novel approach for the
problem of minimizing the completion time for loop tiles
by overlapping computation and communication for each
tile execution. Experimental results have shown that the
theoretically calculated overall time, following the opti-
mal hyperplane transformation, is very similar to the ex-
perimental results. What remains open is an analytical
expression for A;(g) and B;(g) so that we can calculate
Joptimar Trom the parallel architectures internal character-
istics (t.,t;) and MPI internal communication latencies.
Furthermore, modern hardware capabilities (DMA engines,
parallel 1/0, NICs) are not fully exploited by the overly-
ing software layers (OS drivers). We plan to use a DMA
enabled driver with SCI to concurrently send and receive
while the CPU compultes.

7 Acknowledgements
This work was partially funded by the Ministry of Devel-

opment, General Secretariat for Research and Technology,
project PENED 99ED308.

References

[1] T. Andronikos, N. Koziris, G. Papakonstantinou, P.
Tsanakas, Optimal Scheduling for UET/UET-UCT

10

Generalized N-Dimensional Grid Task Graphs, Jour-
nal of Parallel and Distributed Computing, vol. 57, no.
2, pp. 140-165, May 1999.

[2] P. Boulet, A. Darte, T. Risset, Y. Robert, (Pen)-
ultimate tiling?, INTEGRATION, The VLSI Jounal,

volume 17, pp. 33-51, 1994.
3]

I. Drossitis, G. Goumas, N. Koziris, G. Papakonstanti-
nou, P. Tsanakas, Evaluation of Loop Grouping Meth-
ods based on Orthogonal Projection Spaces, in Pro-
ceedings of the 2000 Int’l Conference on Parallel Pro-

cessing, pp. 469-476, Toronto, Canada, Aug. 2000.
[4]

E. Hodzic, W. Shang, On Supernode Transformation
with Minimized Total Running Time, IEEE Trans. on
Parallel and Distributed Systems, vol. 9, no. 5, pp.

417-428, May 1998.

[5] E. H. Hollander, Partitioning and Labeling Loops by
Unimodular Transformations, IEEE Trans. on Parallel
and Distributed Systems, vol. 3, no. 4, pp. 465-476,

Jul. 1992,
[6]

F. Irigoin, R. Triolet, Supernode Partitioning, Proc.
15th Ann. ACM SIGACT-SIGPLAN Symp. Princi-
ples of Programming Languages, pp. 319-329, San

Diego, California, Jan 1988.
[7]

P. Tsanakas, N. Koziris, G. Papakonstantinou, Chain
Grouping: A Method for Partitioning Loops onto
Mesh-Connected Processor Arrays, IEEE Trans. on
Parallel and Distributed Systems vol. 57, no. 2, pp.

941-955, Sep. 2000.
(8]

J. Ramanujam, P. Sadayappan, Tiling Multidimen-
sional Iteration Spaces for Multicomputers, Journal of
Parallel and Distributed Computing, vol. 16, pp.108-

120, 1992.

[9] W. Shang, J.A.B. Fortes, Independent Partitioning of
Algorithms with Uniform Dependencies, IEEE Trans.

Comput., vol. 41, no. 2, pp. 190-206, Feb. 1992.

[10] W. Shang, J.A.B. Fortes, Time Optimal Linear Sched-
ules for Algorithms with Uniform Dependencies, IEEE
Trans. Comput., vol. 40, no. 6, pp. 723-742, June

1991.

[11] J. Xue, Communication-Minimal Tiling of Uniform
Dependence Loops, Journal of Parallel and Distributed

Computing, vol. 42, no.1, pp. 42-59, 1997.

[12] J. Xue, On Tiling as a Loop Transformation, Parallel
Processing Letters, vol.7, no.4, pp. 409-424, 1997.

