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Abstract

In this paper we revisit the tile-shape selection prob-
lem, that has been extensively discussed in bibliography.
An efficient approach is proposed for the selection of a
suitable tile shape, based on the minimization of the
process communication volume. We consider the large
family of applications that arise from the discretiza-
tion of partial differential equations (PDEs). Practi-
cal experience has shown that for such applications and
distributed memory architectures, minimizing the total
communication volume is more important than mini-
mizing the total number of parallel execution steps. We
formulate a new method to determine an appropriate
communication-aware tile shape, i.e. the one that re-
duces the communication volume for a fixed number
of processes. Our approach is equivalent to defining a
proper Cartesian process grid with MPI Cart Create,
which means that it can be incorporated in applications
in a straightforward manner. Our experimental results
illustrate that by selecting the tile shape with the pro-
posed method, the total parallel execution time is sig-
nificantly reduced due to the minimization of the com-
munication volume, despite the fact that a few more
parallel execution steps are required.

1. Introduction

Tiling or supernode transformation has been pro-
posed as the most efficient method to map onto dis-
tributed memory architectures nested loop algorithms,
whose iteration spaces cannot be partitioned into in-
dependent subspaces. The vast majority of such al-
gorithms are encountered in applications stemming
from the field of the partial differential equations
(PDEs). PDEs are discretized using an appropriate

stencil, which calculates value ui of function u at po-
sition i, using the values of its neighboring points
ui−1, ui+1, ui−2, ui+2 etc. This computation imposes
data dependencies along all dimensions of the itera-
tion space, which in turn induce high communication
needs when the application is executed in parallel. In
order to alleviate this communication overhead, tiling
transformation groups neighboring iterations together
into tiles, thus reducing both the total communication
volume and frequency (total number of messages).

Tiling has attracted extensive scientific research
right after its presentation by Irigoin and Triolet in
1988 [12]. Tiling transformation provides flexibility
concerning the number of iterations to be grouped to-
gether into a single tile (tile size), as well as the shape
of the enclosing parallelogram. Since the selection of
the tile size and shape greatly affects the properties
of the transformed space, researchers have focused on
defining criteria for an efficient tiling transformation.
Ohta et al. [14], Hodzic and Shang [7], and Andonov et
al. [1] focused on the selection of the optimal tile size
based on the special characteristics of the application
and the target architecture. Ramanujam and Sadayap-
pan [15], Boulet et al. [2] and Xue [18] worked on the
selection of a tile shape that minimizes the per tile com-
munication volume, i.e. their goal was to minimize the
dependence vectors cutting the planes defining a tile.
In this case, the optimal tile shape is formed by planes
parallel to the algorithm’s dependence cone. More im-
portantly, for a given tile size, Hodzic and Shang [7], [8]
and Högstedt et al. [9], [10] determined the tile shape
that minimizes the parallel execution steps of the tiled
space. In this case, the scheduling-aware tile shape is
obtained by: (a) deciding on an appropriate basic tile
shape (in most cases tile sides are again parallel to the
dependence cone) and (b) properly scaling the sides of
the tile, in order to minimize the maximum parallel
execution path between the first and the last tile.



In this paper we propose a new criterion for the se-
lection of an efficient tile shape. This criterion em-
phasizes the minimization of the per process commu-
nication volume, while at the same time attaining sim-
ple, rectangular basic tile shapes, thus ensuring sim-
plicity and applicability of the proposed methodology.
Note that minimizing the communication overhead is
the primary goal of tiling transformation, therefore try-
ing to further decrease the communication data by
properly selecting the tile shape seems a good idea
in the first place. The problem arises in the cases
where the scheduling-aware tile shape differs from the
communication-aware tile shape proposed here. In this
paper we demonstrate that the criterion for communi-
cation minimization should be given the greatest pri-
ority when targeting distributed memory architectures,
since it is the one that significantly decreases the over-
all execution time of the parallel algorithm.

In general, a tiling transformation can be uniquely
defined by determining three parameters: (a) tile size,
(b) basic tile shape and (c) scaling factors of tile sides.
In our approach, we consider the tile size as a param-
eter determined by the computation and communica-
tion costs of the algorithm and the hardware features
of the target architecture. In addition, we consider
only rectangular basic tile shapes. Rectangular tiling
is employed because when it comes to programming
the vast majority of tiled iteration spaces for parallel
architectures, this is the only legal or practical basic
tile shape that can be applied. A general, parallelo-
gram tiling transformation can only be implemented by
automatic parallelizing compilers due to the complex-
ity of the code that traverses non-rectangular tiles [5].
Given a specific algorithm and iteration space, we pro-
pose a method to properly scale the sides of a rectangu-
lar tiling transformation, in order to reduce the total
communication volume. Our method takes into con-
sideration the boundaries of the initial iteration space
and the dependencies of the original algorithm, and
can be applied on a distributed memory architecture
for a limited (fixed) number of processes. This selec-
tion of the tile scaling factors is equivalent to deter-
mining a virtual process topology, as will be shown in
Section 4. Our experimental results indicate that the
proposed communication-aware tile shape significantly
reduces the overall execution time, compared to the one
achieved by the scheduling-aware tile shape, although
it requires a larger number of parallel execution phases.

The rest of the paper is organized as follows: in the
next section we present some preliminary concepts, i.e.
our algorithmic model, some basic information about
tiling transformation and the parallelization and map-
ping strategy. In Section 3 we provide some intuition

of the method that will be presented in Section 4. In
Section 5 we present a thorough experimental compar-
ison of the communication-aware and the scheduling-
aware tile shapes for two popular micro-kernels, while
Section 6 concludes the paper by summarizing our con-
tribution.

2. Preliminaries

Prior to delving into the core of our work, let us be-
gin our discussion by briefly presenting essential back-
ground knowledge. Obviously, the importance of all
proposed high performance optimizations is directly
associated with the type of the applications addressed.
Thus, we will initially define the algorithmic model con-
sidered here, refer to the tiling transformation for the
partitioning of the algorithm’s iteration space into tiles,
as well as to the columnwise allocation scheme of tiles
to processes.

2.1. Algorithmic Model

Our algorithmic model concerns PDE applications,
which involve N +1-dimensional perfectly nested loops
with constant flow dependencies. If D is the depen-
dence matrix of the algorithm, then rank(D) = N +1,
which means that the algorithm has N+1 linearly inde-
pendent data dependence vectors. If rank(D) < N +1,
then the iteration space can be partitioned into inde-
pendent subspaces and parallelized without the use of
tiling [4]. Furthermore, we consider rectangular itera-
tion spaces. If the physical PDE domain is not rect-
angular, then we may consider either the smallest en-
closing rectangle, or a mapping of the physical domain
consisting of blocks with curvilinear borders into a set
of adjacent rectangular blocks, as described in [11]. In
the latter case, the forthcoming analysis is applied to
each rectangular block, after a number of processes has
been assigned to it.

Overall, the algorithms have the general form of
Alg. 1, where li, ui are constants, U is an N + 1-
dimensional matrix, ~j = (j1, . . . , jN+1), ~d(1), . . . , ~d(m)

are the dependence vectors and F is a linear function.
In practical cases N + 1 equals 3 or 4, since com-
mon PDEs model physical phenomena involving two
or three spatial coordinates and possibly an additional
temporal coordinate.

2.2. Tiling Transformation

When applying tiling transformation, the iteration
space of an algorithm is partitioned into atomic N +1-
dimensional parallelepiped areas, formed by N+1 inde-



Algorithm 1: algorithmic model

for j1 ← l1 to u1 do1

. . .2

for jN ← lN to uN do3

for jN+1 ← lN+1 to uN+1 do4

U [~j] = F (U [~j − ~d(1)], . . . , U [~j − ~d(m)]);5

pendent families of parallel hyperplanes. Tiling trans-
formation is defined by the N + 1-dimensional square
matrix H. Each row vector of H is perpendicular to
one family of hyperplanes forming the tiles. Equiva-
lently, tiling transformation can be defined by N + 1
linearly independent vectors, which correspond to the
tile sides. The inverse H−1 of matrix H contains the
side vectors of a tile as column vectors. In this pa-
per we consider rectangular tiling transformations, i.e.
matrices H and H−1 are diagonal. The number of it-
erations contained within a tile, that is, the size g of
the tile equals the determinant of matrix H−1, thus
g = det(H−1).

2.3. Mapping of Tiles to Processes

In order to parallelize a tiled iteration space we need
to assign tiles to processes and schedule their execution
legally, i.e. without violating the data dependencies of
the original algorithm. According to the columnwise
allocation, we assign a linear sequence of tiles to the
same process and employ a linear time schedule as in
[6] and [7]. In order to effectively utilize hardware with
potential for communication and computation overlap-
ping, each process assumes the execution of a sequence
of tiles that are successive along the longest iteration
space dimension. For homogeneous platforms and fully
permutable iterative algorithms, related scientific liter-
ature [3], [6] has proven the optimality of the column-
wise allocation of tiles to processes, as long as sequen-
tial pipelined execution along the longest dimension is
preserved.

3. An Intuitive Approach

We are now ready to proceed with the definition of
the problem addressed in this paper. First, we will
formally define the problem, and then we will develop
some intuition regarding the solution of the problem.

3.1. Definition of the Problem

The input of our problem is an N + 1-dimensional
nested loop with a rectangular iteration space (X1 ×

. . . × XN × Z) and a dependence matrix D of non-
negative, constant, flow dependencies, a tile size g
and a fixed number of processes P . Z is considered
as the longest dimension of the algorithm iteration
space and should be brought to the innermost posi-
tion (e.g. through loop permutation), so as to en-
able the pipelined, columnwise parallel execution of
the algorithm. We assume that D is a diagonal ma-
trix, i.e. the algorithm imposes only dependencies par-
allel to the axes. Even if this is not the case, we
can apply all proposed methods by simply defining a
new data dependence matrix D′ = diag(d′

i), where

d′i = max{d(j)
i , 1 ≤ j ≤ m}, and implementing the

indirect message passing techniques discussed in [16].
The goal of this paper is to determine a rectangular
tiling transformation, that minimizes the communica-
tion volume of a typical, non-boundary process during
the parallel execution of the tiled iteration space.

Note that problems complying to the form consid-
ered in this paper can often arise when solving ap-
plications derived from PDEs. The rectangular iter-
ation space represents either the minimum rectangle
that encloses the computation domain of interest, or
a single block from the decomposition of the compu-
tation domain into adjacent blocks, as discussed in
Section 2.1. In addition, PDE problems impose con-
stant data dependencies, which can be kept nonnega-
tive as long as backward discretization schemes are em-
ployed. Therefore, the assumption for constant, non-
negative flow dependencies poses no restrictions in ap-
plying our approach to actual PDE algorithms. On
the other hand, this assumption allows us to perform
a tiling transformation directly on the initial iteration
space, without the prior use of a unimodular trans-
formation, since all loops are fully permutable [17].
Furthermore, such algorithms usually impose data de-
pendencies parallel to all space unitary vectors, thus
effectively permitting only rectangular tiling transfor-
mations. Even if this is not the case, rectangular tiling
is the only tiling transformation that can be applied
by a program developer, since the complex code as-
sociated with a non-rectangular tiling transformation
can be practically generated only by a compiler. For all
these reasons, the assumption for a rectangular tiling
transformation constitutes only a minor restriction.

3.2. Intuition of the Solution

As an introductory example, suppose one needs
to solve an initial value/initial boundary problem
(IVP/IBP) in a two-dimensional rectangular domain
X × Y for a time window T . Let the tile size
be g, the available number of processes 16 and the



data dependencies of the algorithm [~d(1), ~d(2), ~d(3)] =
[(2, 0, 0)T , (0, 2, 0)T , (0, 0, 2)T ]. The rectangular tiling
transformation that will be applied can be defined by a
3-dimensional diagonal matrix H−1 = diag(hx, hy, ht).
Suppose that T > X, Y , thus we will map tiles along
dimension t to the same process. In this case, we
choose to partition the X × Y space in 16 tiles and
appropriately adjust the tile height to conform with
the restriction of the tile size. Thus, we will first deter-
mine hx, hy and subsequently we will set ht = g/hxhy.
We will investigate two alternative feasible tile shapes,
namely (hx = X/4, hy = Y/4, ht = 16g/XY ) and
(hx = X/8, hy = Y/2, ht = 16g/XY ).
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Figure 1. Total communication volume and
parallel execution steps for two tiling trans-
formations

Fig. 1 shows the projection of the tiled iteration
space on the xy surface and its allocation to the 16 pro-
cesses (p1 · · · p16) for the two alternative tiling trans-
formations. Note that each process is assigned a chain
of tiles along the t dimension. The shaded parts of
Fig. 1 represent the communication data for the two
candidate tiling transformations. The communication
volume derives from the boundary area between the
processes (3XT +3Y T for the first transformation and
XT + 7Y T for the second transformation), multiplied
by the maximum coordinate of the dependence ma-
trix in the corresponding dimension, which in our case
is 2. Thus, we have Vcomm,1 = 6XT + 6Y T and
Vcomm,2 = 2XT + 14Y T .

If we apply linear scheduling defined by vector Π =
[1, 1, 1], then the tile (4, 4, T/pt) will be scheduled last
according to the first tiling transformation, and will be
executed at time step T1 = 8 + T/pt, while the respec-
tive last tile (8, 2, T/pt) of the second transformation
will be executed at time step T2 = 10 + T/pt. This
implies that the first transformation is better as far
as the total number of parallel execution steps is con-
cerned, since T1 < T2. However, notice that if X > 2Y ,

then Vcomm,1 > Vcomm,2, which means that the second
transformation is superior in terms of total communi-
cation volume.

Consequently, when it comes to executing the
above problem for X > 2Y , we need to decide
between scheduling-aware and communication-aware
tiling. Intuitively, in our example one can see that the
communication-aware transformation entails a moder-
ate increase in the number of time steps, if we make
the reasonable assumption that T/pt >> 2. On the
other hand, if we have X = 4Y , the communication-
aware transformation leads to almost 27% less com-
munication data. For this reason, we claim that the
communication-aware transformation will lead to a sig-
nificantly lower total execution time. In the follow-
ing section we present a method to determine the
communication-aware tiling transformation.

4. Communication-Aware Tile Shape

Contrary to related scientific work, we adopt a
slightly different approach for the specification of the
desirable communication-aware tile shape: Instead of
defining a tiling transformation matrix H, we equiva-
lently aim at determining an appropriate process topol-
ogy P =

∏N

i=1 Pi for the mapping of the parallel algo-
rithm, according to the columnwise computation dis-
tribution scheme presented above. Indeed, the selec-
tion of the process topology implicitly enforces a par-
ticular tiling transformation: Determining a topology
P1× · · · ×PN for the parallel mapping of an algorithm
with iteration space X1×· · ·×XN×Z effectively slices
dimension Xi to Pi parts (i = 1 . . . N). This fact is
equivalent to applying a rectangular tiling transforma-
tion described by the following matrix H−1=









X1/P1 0 . . . 0 0
. . .

0 0 . . . XN/PN 0

0 0 . . . 0 (g
∏N

i=1 Pi)/(
∏N

i=1 Xi)









where g is the tile size dictated by the underlying archi-
tecture (processor speed, interconnection bandwidth
etc.) and affecting the grain of the parallelism.

Moreover, proposing an efficient Cartesian process
topology can lead to the direct incorporation of the op-
timization technique in a message passing library like
MPI, e.g. through the MPI Cart create library rou-
tine.

According to [7], [8], given P processes for the map-
ping of an N + 1-dimensional algorithm across the
outermost N dimensions on an N -dimensional process
grid, the scheduling-aware tiling transformation can be



obtained as a feasible solution to the following opti-
mization problem:

Pi → N
√

P , Pi ∈ N, 1 ≤ i ≤ N

P =
∏N

i=1 Pi

}

(1)

A process topology complying to (1) minimizes the
required total number of parallel execution steps, but
fails to consider both the algorithmic dependencies and
the iteration space, in order to reduce the communica-
tion volume. The advantage of such a process topology
is that it minimizes the latency of the parallel program;
it ensures that the most distant process will start exe-
cuting its work share at the earliest possible time step.

An alternative approach would be to consider a more
communication-aware process topology, as is the case
with the one provided by the following lemma:

Lemma 1. Let X1 × · · · × XN × Z be the
iteration space of an N + 1-dimensional nested
loop algorithm, that imposes data dependencies
[d1, . . . , 0]

T
, . . . , [0, . . . , dN+1]

T
. Let P be the number

of processes available for the parallel execution of the
algorithm. If there exist Pi ∈ N, such that

P =

N
∏

i=1

Pi (2)

and
diPi

Xi

=
djPj

Xj

, 1 ≤ i, j ≤ N (3)

then process topology P1 × · · · × PN minimizes inter-
process communication for the tiled algorithm on P
processes. Also, (3) is equivalent to

Pj =
Xj

dj

N

√

√

√

√

P
∏N

i=1 di
∏N

i=1 Xi

, 1 ≤ j ≤ N (4)

Proof. According to (2), it holds

PN =
P

P1 × · · · × PN−1
(5)

Each process assumes dXi/Pie iterations along direc-
tion i, where 1 ≤ i ≤ N . For the sake of simplicity,
we assume that dXi/Pie ' Xi/Pi. Due to the data de-
pendencies of the algorithm, a non-boundary process
is required to send di

∏j=N
j=1
j 6=i

Xj

Pj
Z data along direction

i. Thus, the total communication volume Vcomm of a
process can be obtained by the following expression:

Vcomm = d1

N
∏

i=1
i6=1

Xi

Pi

Z + · · ·+ dN

N
∏

i=1
i6=N

Xi

Pi

Z

=
Z

∏N

i=1 Xi

P

(

d1P1

X1
+ · · ·+ dNPN

XN

)

(6)

Using (5), (6) can be written by substituting PN as
follows:

Vcomm =
Z

∏N

i=1 Xi

P

N−1
∑

i=1

diPi

Xi

+
dNZ

∏N

i=1 Xi

XNP1 . . . PN−1
(7)

Note that Vcomm is substantially a function of
P1, . . . , PN−1 (formally: Vcomm : N

N−1 → R). Let
V comm be the real extension of Vcomm, defined by
(7) for Pj ∈ R, 1 ≤ j ≤ N (V comm : R

N−1 → R).
For a stationary point (P1, . . . , PN−1) of V comm and
1 ≤ j ≤ N − 1 it holds:

∂V comm

∂Pj

= 0⇒ djPj

Xj

=
dNPN

XN

(8)

Also,

∂2V comm

∂Pj
2 =

2dN

∏N

i=1 Xi

XNP1 . . . P 3
j . . . PN−1

> 0 (9)

Because of (8) and (9), V comm has a minimum at
(P1, . . . , PN−1), and as Pi ∈ N, 1 ≤ i ≤ N − 1, this
will be the minimum of Vcomm, as well. Therefore,
the communication data is minimal when a topology
P1 × · · · × PN satisfying (8) is assumed. Finally, it
holds

P
∏N

i=1 di
∏N

i=1 Xi

=
d1P1

X1
. . .

dNPN

XN

(10)

By combining (10) with (8), we can easily deduce (4).

It should be noted that (4) does not always define
a valid integer process topology: it is possible that
Pj /∈ N for some value j with 1 ≤ j ≤ N . However,
when truncated to an integer, it can serve as a good
starting value for an exhaustive algorithm searching for
feasible process topologies in the close neighborhood
of the minimum of V comm, as determined by (4). In
practice, as N +1 does not exceed 3 or 4, and P ranges
up to a few hundreds or maybe thousands of processes,
the high complexity of the heuristic algorithm does
not result in high execution times. Furthermore, the
monotonicity of function V comm allows immediate
elimination of candidate process topologies, that
lead to increased communication cost. In order to
verify this claim, we measured on a PIII@800MHz
the execution times for the specification of a fea-
sible communication-aware 3D process topology,
given all possible 4D iteration spaces (100 . . . 10k) ×
(100 . . . 10k) × (100 . . . 10k) × Z, data dependencies
[(1 . . . 3, 0, 0, d), (0, 1 . . . 3, 0, d′), (0, 0, 1 . . . 3, d′′)] and
for 100 ≤ P ≤ 1k. The execution time equaled on
average 21 msec, while under no circumstances did it
exceed 0.9 sec.



Algorithm Iteration spaces Data dependencies #Processes
ADI {16, 32, 64, 128, 256} × 256× 16k (d1, d2, d3) = (1, 1, 1) 16/12

DEXY T {16, 32, 64, 128, 256} × 256× 16k (d1, d2, d3) = (3, 3, 1) 16
DEXY T 1k × {32, 64, 128, 256, 512} × 2k (d1, d2, d3) = (3, 3, 1) 16
DET XY 1k × {32, 64, 128, 256, 512} × 2k (d1, d2, d3) = (1, 3, 3) 16

Table 1. Configuration layout of conducted experiments

5. Experimental Results

In order to evaluate the comparative performance of
the proposed communication-aware tiling against the
standard scheduling-aware alternative, we measured
the total parallel execution time of two micro-kernel
benchmarks, namely Alternating Direction Implicit
(ADI) integration and the Diffusion Equation (DE),
for various iteration spaces and tile grains. ADI inte-
gration is a three-dimensional nested loop stencil com-
putation, used for solving partial differential equations
[13]. On the other hand, the DE micro-kernel arises
from the discretization of the diffusion PDE on a two-
dimensional spatial domain using a second-order dis-
cretization scheme for the spatial derivatives. DE im-
poses higher communication to computation demands
with respect to ADI, thus it facilitates the experimental
evaluation of the efficiency of the communication-aware
tiling in terms of scalability.

Our experimental platform is an 16-node Linux clus-
ter (Pentium-III CPU at 800 MHz, 256 MB RAM,
16 KB L1 I cache, 16 KB L1 D cache, 256 KB L2
cache), interconnected with 100 Mbps FastEthernet.
Each cluster node runs Linux kernel 2.4.26. We used
MPICH v. 1.2.6 MPI implementation, configured with
the Intel C++ compiler v. 8.1.

Table 1 displays the selected iteration spaces and
data dependencies for the various experiments we con-
ducted. DEXY T corresponds to a DE micro-kernel with
two outermost spatial loops (XY ) and one innermost
temporal (T ). Similarly, DET XY denotes a DE algo-
rithm with an outermost temporal and two innermost
spatial loops. Due to the second-order accuracy of the
discretization scheme employed in DE, the data depen-
dence components along the x and y dimensions are
equal to 3.

Recall that related theory requires the longest algo-
rithm dimension at the innermost position, therefore
both DE variations are possible, depending on the na-
ture and complexity of the particular problem. Due
to our underlying infrastructure, we considered 16 pro-
cesses for the parallel execution of the tiled algorithms,
and occasionally also 12, in order to evaluate the pro-
posed theory for additional process topology combina-
tions. All results are averaged over at least three in-

dependent executions. We shall refer to the iteration
spaces {16, 32, 64, 128, 256}×256×16k as set 1, whereas
the iteration spaces 1k×{32, 64, 128, 256, 512}×2k will
be addressed to as set 2.

5.1. ADI Integration

The results for ADI integration are presented in
Fig. 2 (set 1, 16 processes) and Fig. 3 (set 1, 12 pro-
cesses). All results have been normalized with respect
to the ones obtained under the scheduling-aware tiling
transformation, so as to allow for straightforward quan-
titative comparison: the height difference between the
bars in each bar pair equals the percentage variation
in the total execution time. Assuming 16 processes,
we compare the scheduling-aware tiling transforma-
tion, that corresponds to a 4×4 process topology, with
the communication-aware tiling approach, that imple-
ments the tile shape selection methodology described
in Section 4. Similarly, when using 12 processes, we
compare against the scheduling-aware 3 × 4 topology.
Regarding the tile size, we tried all possible tile heights
between 1 and 200, and in each case consider the tile
size leading to the minimum overall execution time.
However, in Fig. 4, we also present detailed granu-
larity results for ADI on 16 processes, in order to il-
lustrate the relative advantage of the communication-
aware tiling over the scheduling-aware one for all tile
sizes considered.

In both cases (16 and 12 processes), there is a sig-
nificant performance improvement when applying the
communication-aware topology. This improvement is
particularly evident for relatively asymmetric iteration
spaces. For example, when using 16 processes we ob-
serve an impressive performance improvement of 45%
for the 16× 256× 16k iteration space, which gradually
drops to 19% (32 × 256 × 16k), 9% (64 × 256 × 16k)
and finally 2% (256×256×16k). Similarly, when using
12 processes, we have a performance improvement that
ranges from 41% to 3%.

In order to further investigate the performance im-
provement of the communication-aware tiling transfor-
mation over the scheduling-aware alternative, we per-
formed profiling of the per tile communication and
computation times. We timed the computation time of
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Figure 2. ADI integration, set 1, 16 processes
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Figure 3. ADI integration, set 1, 12 processes

all processes on a per tile basis, as well as the commu-
nication time associated both with MPI primitives and
packing/unpacking communication data. We present
the maximum computation and maximum communica-
tion time, reduced over all processes and normalized to
the {maximum computation time+maximum commu-
nication time} under the scheduling-aware tiling trans-
formation. Note that the sum of these partial times
is not necessarily equal to the total execution time, as
we depict the worst case scenario for both the com-
munication and the computation times. However, de-
spite the relatively small differences in the computa-
tion times, that can be attributed to data locality ef-
fects, this profiling confirms that the relative advan-
tage of the communication-aware tiling transformation
can be directly attributed to the respective reduction
of the communication times. Wherever this reduction
is relatively high, we also obtain a significant reduc-
tion of the total execution time. Finally, Fig. 4 con-
firms that communication-aware tiling outperforms the
scheduling-aware alternative for all possible tile grains.

5.2. Diffusion Equation

We performed analogous measurements for the DE
micro-kernel. Fig. 5 depicts the total parallel execu-
tion times for 16 processes, XY T -loop form and it-
eration spaces belonging to set 1, Fig. 6 displays the
times obtained for 16 processes, XY T -form and set 2,
while Fig. 7 shows the respective times for 16 processes,
TXY -form and set 2.

The selection between the XY T - and TXY -form
of the algorithm depends upon the relative temporal
vs spatial complexity of the particular physical prob-
lem. Moreover, the selection between the various iter-
ation spaces of sets 1, 2 models the possibility of both
“square” and “rectangular” surfaces. Note that the
asymmetry of some iteration spaces used in the ex-
perimental series is not an artificial selection; on the
contrary, asymmetric computational domains and iter-
ation spaces are very common in PDEs (i.e. thermal
diffusion in a bar).

In all cases, the experimental results indicate a clear
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Figure 4. ADI integration, set 1, 16 processes, granularity results

advantage of the communication-aware tiling transfor-
mation. By comparing the ADI and the DE results ob-
tained for set 1, we can further conclude that the ben-
efit attained when resorting to a communication-aware
tiling transformation is even more profound for algo-
rithms with intrinsic high communication demands.
Indeed, the performance improvement of the XY T -
form DE under the communication-aware tiling ranges
from 60% for the 16 × 256 × 16k iteration space to
5% (128 × 256 × 16k). This can be attributed to the
fact that DE requires substantially more communica-
tion than ADI, whereas both algorithms exhibit similar
computational complexity. Based on that observation,
we can reasonably assume that for even larger depen-
dence factors di (e.g. if more previous time or space
values are employed during the discretization process,
in order to increase the accuracy), the relative perfor-
mance benefit of the communication-aware tiling trans-
formation will be more significant.

6. Conclusions

This paper presents a novel technique for the selec-
tion of an efficient and feasible tile shape for the mes-
sage passing parallelization of fully permutable nested
loop algorithms. We formulate a simple and applica-
ble method for the specification of an appropriate tile
shape, that minimizes the communication volume of a
non-boundary process, assuming a fixed total number
of processes and a specific algorithm (iteration space,
data dependencies). The presented technique can be
easily combined with the MPI Cart create primitive,
to deliver efficient Cartesian process topologies.

More importantly, we extensively evaluate the effec-
tiveness of the proposed communication-aware tiling
with the aid of typical micro-kernel benchmarks,
namely ADI integration and the discretized Diffusion
Equation. Summarizing the experimental results, we
conclude that:

• the proposed communication-aware tiling is par-



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

256x256x16k128x256x16k64x256x16k32x256x16k16x256x16k

Ra
tio

4x4

1x16

4x4

2x8

4x4

2x8

4x4
2x8

4x4 4x4

scheduling-aware topology
communication-aware topology

(a) total execution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

256x256x16k128x256x16k64x256x16k32x256x16k16x256x16k

Ra
tio

scheduling-aware topology, communication
scheduling-aware topology, computation
communication-aware topology, communication
communication-aware topology, computation

(b) execution time profiling

Figure 5. Diffusion Equation, XY T -form, set 1, 16 processes
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Figure 6. Diffusion Equation, XY T -form, set 2, 16 processes

ticularly efficient for the parallelization of nested
loop algorithms on distributed memory architec-
tures when the algorithm exhibits asymmetric
data dependencies and/or iteration space dimen-
sions

• the same observation holds for algorithms impos-
ing relatively high communication-to-computation
demands for the underlying hardware/network
parallel infrastructure and lower level message
passing software

• in any case, communication-aware tiling outper-
formed the scheduling-aware alternative for all
benchmark applications, iteration spaces, data de-
pendencies and tile sizes considered here
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