Early Experiences on Accelerating Dijkstra’s Algorithm
Using Transactional Memory

Nikos Anastopoulos, Konstantinos Nikas, Georgios Goumdd\ectarios Koziris

National Technical University of Athens
School of Electrical and Computer Engineering
Computing Systems Laboratory
{anastop,knikas,goumas,nkozj@cslab.ece.ntua.gr

Abstract creating more parallelism in the outer loop. This leads teral
) i) ~native algorithms likeA-stepping [13, 16] that enable concur-
In this paper we use Dijkstra’s algorithm as a challenging, rent extraction of multiple nodes from the unvisited seteTh
hard to parallelize paradigm to test the efficacy of seveeatp second strategy works on pure Dijkstra and seeks paratielis
allelization tEChniqueS in a multicore architecture. Wasider in the inner |Oop, by enab"ng concurrent acceses to the‘-prio
the application of Transactional Memory (TM) as a meansity queue. However, practical implementations of conautrre
of concurrent access to shared data and Compare its perforbinary heaps as priority queues [12] are based on unav(m'dab'
mance with straightforward parallel versions of the algbm fine-grain locking of the binary heap, which is expected tb ki
based on traditional synchronization primitives. To irase the performance of such a scheme.
the granularity of parallelisn_"n and avoid exce_ssive synehro |n this paper we face the challenges of parallelizing Dijk-
nization, we combine TM with Helper Threading (HT). Our stra's algorithm for a multicore architecture. To decrethse
simulation results demonstrate that the straightforwasat-p synchronization cost we empldyansactional Memory (TM)
allelization of Dijkstra’s algorithm with traditional ldcs and [2,11] as a means of efficient concurrent thread accesses to
barriers has, as expected, disappointing performance.f@nt shared data. TM is a novel programming model for multi-
other hand, TM by itself is able to provide some performancecore architectures that allows concurrency control ovekmu
improvement in several cases, while the version based on Tl\{|p|e threads. The programmer is able to envelop parts of the
and HT exhibits a significant performance improvement thatcoge within a transaction, indicating that within this seat

can reach up to a speedup bf6. exist accesses to memory locations that may be performed by
_ other threads as well. The TM system monitors the transac-
1 Introduction tions of the threads and, if two or more of them perform con-

flicting memory accesses, it resolves this conflict. TM seems

Dijkstra’s algorithm [8] is a fundamental graph algorithm a promising approach for dynamic data structures and applic
used to compute single source shortest paths (SSSP) fdrgraptions with independent threads. It remains though to besinve
with non-negative edges. SSSP is a classic combinatorial ogigated how TM can speedup a single application.
timization problem used in a variety of applications such as The parallelization of the inner loop does not exploit a
network routing or VLSI design. The algorithm maintains a significant amount of parallelism. Therefore, we choose to
set S of visited nodes, whose shortest path has already beenoarsen the granularity of parallelism by employing theaide
calculated. In each iteration, the unvisited node with theers of Helper Thread¢HT) [7, 20]. Dijkstra’s algorithm spends a
est distance from the sétis selected and inserted intband large part of its execution in the relaxations of the nodebef
the distances of its neighbors are updated. The set of unvigriority queue. Parallel threads can update (relax) thadces
ited nodes is implemented as a priority queue. This seesgliz of several nodes’ neighbors without changing the semaatics
a large part of the algorithm’s operations, thus making&ig the algorithm. Thus, while the main thread extracts and up-
a hard to parallelize graph algorithm [5, 16]. dates the neighbors of the head of the priority quéuselper

Delving into implementation details, the algorithm invesv threads update the neighbors of the nerbdes in the priority
a two-level nested loop: the outer loop iterates over all thequeue. This approach exploits parallelism in the outer Joop
nodes of the graph, selecting in each step the one closest twithout changing the algorithm.
set S, while the inner loop updates the distances fr6nof We have implemented several versions of the multithreaded
all the neighbors of the extracted node. To implement parall Dijkstra algorithm using traditional synchronizationrpitives
versions, researchers follow two general strategies. The fi (locks and barriers), TM and HT and evaluated them using
strategy attempts to relax the sequential nature of Dgkisyr Simics [14] and GEMS [1, 15], which allow the simulation

of multicore systems and provide support for TM. Our results2.2 Lock-based parallel implementation
demonstrate that the combination of TM and HT achieves sig-

nificant speedup on a hard to accelerate application, wéile r
quiring only a few extensions to the original source code.

An intuitive choice for parallelizing Dijkstra’s algorith is
to exploit parallelism at the inner loop by relaxing all ooitggy

The rest of the paper is organized as follows. Section 2edges of vertex: in parallel. This is a fine-grain paralleliza-

presents the basics of Dijkstra’s algorithms and the detdil
the various multithreaded implementations. Section 3 demo
strates simulation results comparing the performance ef th

tion scheme. In each step, one thread extradtem the heap
and then its outgoing edges are assigned (e.g. via cyclgrass
ment) to parallel threads for relaxation. This idea is digaién

versions under consideration. Related work is presented ifrigure 2 while a generic implementation is shown in Figure 1b
Section 4, while Section 5 summarizes the paper and dissusse A number of observations can be made concerning this par-

directions for future work.

2 Parallelizing Dijkstra’s algorithm

2.1 Dijkstra’s algorithm

Dijkstra’s algorithm solves the SSSP problem for a di-
rected graph with non-negative edge weights.
let G = (V, E) be a directed graph with = |V| vertices,
m = |E| edges, andv : E — R a weight function assign-
ing non-negative real-valued weights to the edgeé&/ offFor
each vertex, the SSSP problem comput&g), the weight of
the shortest path from a source verteto v. For each vertex
v, Dijkstra’s algorithm maintains ahortest-path estimat@r
tentative distancded(v), which is an upper bound for the actual
weight of the shortest path fromto v, §(v). Initially, d(v) is

set tooo and through successive edge relaxations it is gradu-

ally decreased, converging 8¢v). The relaxation of an edge
(v, w) setsd(w) to min{d(w), d(v) + w(v,w)}, which means

that the algorithm tests whether it can decrease the weight o

the shortest path fromto w by going throughy.

The algorithm maintains a partition &f into settled(vis-
ited), queuedand unreachedvertices (the latter two repre-
senting unvisited nodes). Settled vertices hédwe = §(v);
queued havel(v) > d(v) andd(v) # oo; unreached have
d(v) = oo. Initially, only s is queuedd(s) = 0 and all other
vertices are unreached. In each iteration of the algorithm,
vertex with the smallest shortest-path estimate is saledte

state is permanently changed to settled and all its outgoing
edges are relaxed, causing any of its neighbors that were un-

reached by the source vertex until this point to become qlieue
The algorithm is presented in more detail in Figure la.

The basic data structure lying at the heart of Dijkstra’s al-
gorithm is a min-priority queue of vertices, keyed by their

d(-) values. The queue is used to maintain all but the set-

tled vertices of the graph. At each iteration, the vertexhwit
the smallest key is removed from the quetfactMin
operation) and its outgoing edges are relaxed, which cauld r
sult to reductions of the keys of the corresponding neighbor
(DecreaseKey operation). To amortize the cost of the multi-
ple ExtractMin andDecreaseKey operations, especially
for realistic, sparse graphs, the min-priority queue islenp
mented as a binary heap.

Specifically,

allelization scheme. First, the speedup is bounded by the av
erage out-degree of the vertices, i.e. the density of thphgra
Clearly, if vertices have on average a small number of neigh-
bors, then the parallel segment of the algorithm (lines $—14
will consume a small fraction of the total execution time kma
ing the sequential part (lines 3—&xtractMin) dominant.

Algorithm 1 Dijkstra’s algorithm.

Input : Directed graptG = (V, E), weight functionw : E — R,
source vertex, min-priority queuer
Output : shortest distance arraj predecessor array

/* Initialization phase */
1 foreachv € V do
2 d[v] < INF;
3 m[v] < NIL;
4 Insert (Q,v);
5 end
6 d[s] < 0;
/* Main body of the algorithm */
7 while Q # 0 do
8 u «— ExtractMin(Q) ;
9 foreachv adjacent to wo
sum « du] + w(u,v);
if d[v] > sum then
DecreaseKey(Q, v, sum);
d[v] «— sum;
w[v] — u;

@)

Algorithm 2 © Fine-grain parallel implementation of Dijkstra’s algbuit.

Input : Directed graphG' = (V, E), weight functionw : E — R,
source vertex, min-priority queuer
Output : shortest distance arrai predecessor array

/* Initialization phase same to the serial code */

/* Main body of the algorithm */
while Q # 0 do
Barrier
if tid = 0 then
u «— ExtractMin(Q) ;
Barrier
foreachv adjacent to wo in parallel
sum «— d[u] + w(u,v);
if d[v] > sum then
Begin-Atomic
DecreaseKey(Q, v, sum);
End-Atomic
d[v] «— sum;
w[v] — u;

1
2
3
4
5
6
7
8

10
11
12
13
14
15 end

end

(b)
Figure 1: Serial and multithreaded implementations of Dijk
stra’s algorithm.

The second observation concerns the concurrent acceskes to

binary heap by the parall®ecreaseKey operations. The e oo

binary heap is implemented as a linear array and can be con- sk st stz
sidered as a nearly complete binary tree. The smallest eleme \ [i i]
in the heap is stored at the root and the subtree rooted atea nod ! !
contains values no smaller than the value of the node. During stepk stepke1 | stepke2

a DecreaseKey operation, a vertex obtains a smaller value Thread 1

[] Thread 2
[| Thread 3
Ll Thread 4

as its new, updated shortest path estimate. If this new vslue]
smaller than that of its parent, the vertex has to move upsvard L]
the tree until it is placed to a location that satisfies the-min g re 2: Execution patterns of serial and multithreadgk-Di
heap property. During this traversal, the node is repeyltedlstra,S algorithm

compared to its parent and if its value is smaller, the nodes a s '

swapped. 12 —E%f;’é%?ifcgs.lmkk E}
The first, and rather naive, approach to enable paralleliza- e
tion of the relaxation phase, is to use a global mutex to lbek t 3 ol I e =y
entire heap during eadbecreaseKey operation. This con- : o
stitutes a conservative, coarse-grain synchronizatiberse § os
that permits only on®ecreaseKey operation at a time and § o
obviously limits concurrency. We refer to this schemegs- o
lock. The alternative, more optimistic approach is to allow 01 e —
multiple sequences of node swaps to execute in parallehgs lo T e 5 10 12 1 1

Number of threads

as they access ditferent parts of the.heap. More Spec't'qa"yﬁgure 3: Speedups of lock-based parallel versions with rea
instead of using one lock for the entire heap, one can utilize

separate locks for each parent-child pair of nodes. Wherzeve and perfect barriers.

thread executes BecreaseKey operation and a node swap gcqapility problem of thegs-lockscheme. Nevertheless, the
is required, it mustfirstacquire the appropriate lock tRetrgs — gcheme still performs worse than the serial execution oéthe
this specific pair of nodes (a scheme similar to [12]). In this gorithm, revealing that this coarse-grain synchronizeictoo
way atpmicity is guaranteed anq the algorithm can be exdcute ., servative and cannot expose enough parallelism.
safely in parallel. We refer to this schemefgs-lock Finally, thefgs-lockscheme combined with “perfect” bar-
To obtain a a first picture of the efficiency of these schemesyiers fails to outperform the serial execution, despitenpei
we simulated their execution on Diijtra’S algorithm for a more Opt|m|st|c than thegs_|ockscheme_ As the number of
graph with 10K vertices and 100K edges, which were ran-threads increases, its performance improves slightlycatitig
domly added between pairs of vertices. A detailed desonpti that there does exist an amount of parallelism. However, the
of the simulation framework can be found in Section 3.1. Fig-fgs-lockscheme fails to exploit it efficiently and there are two
ure 3 demonstrates the speedup of the two schemes for 2 to Inssible reasons for this failure. The first reason is thatdier
threads. The speedup is calculated as the ratio of the eésecut to allow concurrent accesses to the heap, a pair of spirslock
time (in terms of cycles) of the serial to the parallel schemejs ysed for each pair of nodes, causing the total overheael to b
in each case. The performance of tgs-lockscheme is dis- high and lowering the performance gains from the exploited
appointing. Although the limited parallelism of the scheme parallelism. The second reason is that fs-lock scheme
explains the lack of speedup, a more detailed execution progjiows concurrent accesses to the binary heap only when the
filing revealed that the vast performance drop is attribited threads access different parts of the heap. The probabflity
the overhead of barriers that surround theractMin ~ op- threads touching the same nodes of the binary heap depends or
eration and decouple the serial phases from the parallel. onethe structure of the graph as well as on the order by which the
More specifically, for 2 threads the time spent in barriers ac neighbors of a vertex are examined duringfreereaseKey
counts for71% of the total execution time. This percentage Operations_ Whenever this occurs, the threads are sedaliz
rises up t88% when using 8 threads, explaining why the per- thys limiting the total available parallelism.
formance degrades when more threads are used. We used the
barriers provided by the Pthreads library, yet we arguetthat 2.2.1 TM-based parallel implementation
should not be a problem of the specific barrier implementatio
since alternative software-based implementations areated Thefgs-lockscheme described in Section 2.2 allows concur-
to provide similar results. rent accesses to the binary heap used in the implementdtion o
In an attempt to isolate the effect of the barriers, we imple-Dijkstra’s algorithm. Unfortunately, it has a high overdehie
mented a version of idealized, zero-latency barriers thlgt r to the numerous locks needed limiting its efficiency seyerel
solely on hardware in our simulated environment. This sa&hem Looking for alternatives, we test the efficacy of TM, as a nsean
is namedperfbar+cgs-lock It is clear from Figure 3 that the of concurrent accesses to the shared binary heap. The first ap
replacement of barriers with “perfect” ones deals with therp proach is to enclose eadhecreaseKey operation within a

transaction, and rely on the underlying system to ensura-ato 12
icity. When concurrent transactions access the same etsmen 11

in the heap and at least one of these accesses is a write oper- . ﬁ
ation, a conflict arises and the system needs to resolve it de- o .//'/

ciding which transaction succeeds. ThecreaseKey oper- ' :/E#m
0.8

ation includes a series of swaps, as a node traverses the heap : /\/
until it is placed in the final correct position. When two ormo 07

Multithreaded speedup

vertices are relaxed in parallel, the paths of these heaprtra 06 perbaregsiod = ||
sals might share one or more common nodes. The TM system sl et —
will detect the conflict, only one of the transactions will &le 2 4 6 8 10 12 M 38

Number of threads

lowed to commit and only one vertex will be relaxed. The other
conflicting threads will have to pause or repeat their woek, d
pending on the implementation of the TM system and its CON+jqng on the binary heap. However, to obtain these perfocman
flict detection and resolution policy. This scheme is not@e-fi improvements ideal barriers are employed.

grain as thdgs-lockscheme, where atomicity is enforced at the

level of a single swap and not for a series of swaps. We will -5 3 A multithreaded version based on HT

fer to this scheme ags-tm Itis implemented as shown in Fig-
ure 1b by replacing thBegin-Atomic andEnd-Atomic

Figure 5: Speedups of lock-based and TM-based versions.

operations with the appropriaBedin-Transaction and In this section we present an alternative multithreaded ver
P pprop 9 sion of Dijkstra’s algorithm based on helper threading. The

End-Transaction rimitives. L X
P . motivation arises from the poor performance of all aforemen

as '?hseicgﬂgcﬂtsegﬂsg]v: :Jsstiﬁ 'm_l_pl\l/len_}%n;?cs;r?]e?siat‘:’“gnee'gé?]"ﬁoned versions, which is due to their limited parallelisnda
9 9 ' P ’ excessive synchronization. Our goal is to coarsen the granu

swap executed by thBecreaseKey operation is enclosed : . . : :
into a transaction. This means that the transactions will beIarlty of parallelism, as in [10, 13, 16], without, changitig>

) algorithm itself. Thus, instead of partitioning the innepp
§h0rter than tho_se of thegs-tmscheme resu_ltlng, hopef_ully, and assigning only a few neighbors to each thread, we seek
into fewer conflicts and thus more parallelism. We will re-

. . . to assign the relaxation of a complete set of neighbors th eac
fer to this scheme afgs-tm For the implementation of the 9 b g

fgs-tmscheme thdecreaseKey presented in Figure 4 is thread. To accomplish this, we take advantage of a basic prop

L erty of Dijkstra’s algorithm: the relaxations (lines 11113} in
used. Similarly to th_e Iock—_based sch_emes, bOt.h these TMi:igure 1a) lead to monotonically decreasing values for the d
based schemes require the incorporation of barriers toudeco

. . tances of unvisited nodes until each distance reaches dkb fin
ple the serial from the parallel phases. Having observed th

Fhinimum val As lon raph n is inserted in th
disastrous effect of the barriers on the performance ofable| um value. As long as a graph node is inserted in the

based schemes, we employ the “perfect”, zero-latencydsari qugued set (i.e. the node’s distance fr8ns not infinite) its _
in the evaluation’ of our TM-based implen;entations as well neighbors could also be relaxed to newer updated values. Thi

property is not utilized by the original serial algorithnnee
all the updates occur for the neighbors of the extracted .node

Algorithm 3. DecreaseKey Practically, the algorithm avoids calculating intermeelidis-
Input = min-priority queue, vertexu, new keyvalue for vertexu tances that will eventually be overwritten. Our key ideahiatt
; ?E]f value; parallel threads can serve hslper threadsand perform re-
3 while (parent(i).key > value) do laxations for neighbors of nodes belonging in the queued set
. ?jj‘i’;;'(za?)?aai"“ Optimistically, some of these relaxations will be utilizadd
6 End-Transaction offloaded by thenain thread
; o i« parent(i); In our implementation the main thread operates like in the

sequential versiorgxtractingin each iteration the minimum
Figure 4:DecreaseKey implementation fofgs-tmscheme. ~ Vertex from the priority queue and relaxing its outgoingeslg
At the same time, th&-th helper threadeadsthe tentative

To obtain a first insight on the efficiency of the TM-based distance of the:-th vertex in the queue (let us call i, for
schemes we used the same graph as in Section 2.2 and presshbrt) and relaxes all its outgoing edges based on this value
speedups in Figure 5. In contrast to the lock-based scheme®yhen the main thread accomplishes all relaxations, it rstifi
the TM-based ones outperform the serial implementation fotthe helper threads to stop their relaxations, and they atiged
more than 4 threads. For 2 threads the overhead of the TNo the next iteration. This scheme is demonstrated in Fi§ure
scheme seems to be too high, cancelling out any performancghe rationale behind it is that vertices occupying the/qyo-
gains from the exploitation of parallelism. As more threads sitions in the queue might already be settled with some proba
used though, the performance is improved providing a sgeedubility, so that when the helper threads read their distanoels
of up to almosti.1. More detailed results are presented in Sec-relax their outgoing edges, they will make their correspogd
tion 3.3. Thus, it seems that TM is a promising mechanism toneighbors settled, as well. As a result, when the main thread
exploit the available parallelism of ti@ecreaseKey opera- checks these vertices later, it will not have to perform aay r

extractmin Mlreadtid™min relax outgoing edges fication variabledone to 1 within a separate transaction. This
7777777 Time - value denotes a state where the main thread proceeds to the
et | s‘f‘” sep et seple next iteration and requires all helper threads to stop ahd fo
low, terminating any operations that they were performing o
the heap. All helper threads executing transactions aptiiig
will abort, sincedone is in their read sets as well. The helper
threads will immediately retry their transactions, butréhés
a good chance that they will findone set to1, stop exam-
ining the remaining neighbors in the inner loop and continue
_)) with the next iteration of the outer loop. In the oppositeecas
Figure 6: Execution pattern of the helper threads version. 4t the main thread performs tB&tractMin operation too
quickly, done will be set back td) and the helper threads will
laxations. On the other hand, if theth thread readsy, it is miss the last notification, continuing from the point whédreyt
possible that:;, might not have been settled yet and thus havehad stopped. This might yield suboptimal updates to the dis-
a suboptimal tentative distance. The thread would thentepda tances of the neighbors, but as explained above, theseavill b
the neighbors according to a new tentative value, which willoverwritten once the vertices examined by the helper tlgead
eventually be set to the appropriate minimum value, whgn reach the top of the queue. So, correctness is guaranteed.
will be examined by the main thread later on. Atthat moment, Summarizing, the main concept of our implementation is
all its outgoing edges will be re-relaxed using the correct fi to decouple as much as possible the main thread from the ex-
nal distance. A significant aspect of this multithreadecsuh
is that the main thread stops all helper threads after fingshi _ Algorithm 4. Main thread's code.
each iteration of the outer loop. At this time, the helpee#us Input : Directed graptG = (V,), weight functionw : E — R,
stop their computations and proceed with the main thread to ¢, zﬂg[f:s}’zﬁf:ng'gr‘r’;;g%ggfggr array
the next iteration. It is possible that at this time a helpeead * Initialization phase same to the serial code */
might have updated only some of the neighbors of its vertex 1 wnie ¢ 2 0 do
xk, leaving the other ones with their old, possibly suboptimal 2 u « ExtractMin(Q) ;
distances. As explained above, however, this is nota pmoble 5 fone %
since all neighbors af;, with suboptimal distances will be cor- 5
;
8
9

Thread 2

Thread 3

Thread 4

sum « du] + w(u,v);

Begin-Transaction

if d[v] > sum then
DecreaseKey(Q, v, sum);
d[v] « sum,;
w[v] — u;

End-Transaction

foreachv adjacent to wo
rectly updated whem;, reaches the top of the priority queue.

The code executed by the main and helper threads is shown
in Figure 7a and Figure 7b, respectively. In the beginning of
each iteration, the main thread extracts the top vertex them 11
gueue. At the same time, the helper threads spin-wait unatil t 12 end
main thread has finished the extraction, and then each ode rea 13 Begin-Transaction
—without extracting—one of the tdpvertices in the queue (this e dome s L oon
is whatReadMin function does). Next, all threads relax all the 16 end
outgoing edges of the vertices they have undertaken inlpharal
Note that, compared to the original algorithm, a perforneanc @)
improvement is expected, since, due to the work done by the Algorthm 5 Fieiper feads code.
helper threads, the main thread will evaluate the expressio :
. . . 1 while Q # 0 do
line 7 as true fewer times and thus, will not need to execde th 2 while done = 1do:

operations of lines 8-9. j o Ff%dMin(Q, tid);

The proposed helper threading scheme is largely based on 5 foreachy adjacent to sand while stop = 0 do
TM. Updates to the heap via tlidecreaseKey function, as 6 Begin-Transaction
well as updates to the tentative distances and predecessor a ; i d"’;z: gth;[f;] 4 w(ey):
rays are enclosed within a single transaction for both thema 9 if dly] > sumthen
and helper threads. This ensures atomicity of these updates }? Sgﬁr‘fsjfg(Q. y, sum);
i.e. that they will be performed in an “all-or-none” manner. 12 mlyl —
Furthermore, it guarantees that in case of conflict only one 13 else

. L. . 14 stop «— 1,

thread will be allowed to commit its transaction and perform 15 End-Transaction

the neighbor update. A conflict can arise when two or more 16 end
threads update simultaneously the same neighbor, or wegnth _ 17 end
update different neighbors but change the same part of the (b)
heap. The interruption of helper threads is implemented us-_. , i i . ,

ing transactions as well. Specifically, when the main thread 19uré 7: Multithreaded implementation of Dijkstra's aigo

has completed all the relaxations for its vertex, it setswpte~ 1ithm based on Helper Threading.

configurations up to 32 cores
UltraSPARC 1lI Cu (ll1+)

Sequential Parallel. Ideal

Simics| Processor part (%) | part(%) | speedug

Graph| Edgeq Parameters

Private, 64KB, 4-way set-associative, randl| 10K 97.8 2.2 1.02
L1 caches . .)
64B line size, 4 cycle hit latency rand2 | 100K 38.7 61.3 258
Ruby L2 cache Unified and shared, 8 banks, 2MB, 4-Way set- rand3| 200K 26.2 73.8 3.81

associative, 64B line size, 10 cycle hit latecny

rmatl| 10K a=0.45 78.3 21.7 1.27
Memory 160 cycle access latency
: _ rmat2 | 100K be=0.15 39.3 60.7 2.54
TM System | HYBRID resol. policy, 2Kb HW signatures
rmat3 | 200K d=0.25 26.8 73.2 3.73
Table 1: Simulation framework. sscal| 28K | (P,C) =(0.25,5) | 941 >-9 1.06
ssca2| 118K | (P,C) = (0.5,20) 35.2 64.8 2.84
ecution of the helper threads, minimizing the time that & ha | ssca3| 177K | (P,C) = (0.5,30) 28.9 71.1 3.46
to spend on synchronization events or transaction abohs. T
helper threads are allowed to execute in an aggressive man- Table 2: Graphs used for experiments.

ner, being at the same time as less intrusive to the maindhrea

as possible, even if they perform a notable amount of uselesEhUSthe synchronization of threads is handled by the sitmula

work. The semantics of the algorithm guarantee that any in-21d not the operating system, providing instant suspefision

termediate relaxations made by the helper threads are-not juMption of the arriving/departing threads. To avoid reseu
reversible. Finally, by using a TM with a conflict resolution conflicts between our programs and the operating systeirs pr

policy that favors the main thread, transaction abort ozeds ~ CESSES @S much as possible, we used CMP configurations with
are mainly suffered by the helper threads. more processor cores than the number of threads we required.

So, the experiments for 2 and 4 threads were performed on an
8 core CMP, while the 8 threads experiments were done on an

3 Experimental Evaluation 16 core CMP. To schedule a thread on a particular processor
and avoid migrations, we used thset _bind system call of
3.1 Experimental setup Solaris. Finally, all codes were compiled with the C compile

of Sun Studio 12 using the O3 optimization level.

We evaluated the performance of the various implementa-
tions of Dijkstra’s algorithm through full-system simutai, 3-2 Reference graphs
using the Wisconsin GEMS toolset v.2.1 [1, 15] in conjunc-
tion with the Simics v.3.0.31 [14] simulator. Simics progsi To evaluate the different schemes we strived to work on
functional simulation of a SPARC chip multiprocessor sgste graphs which vary in terms of density and structure. In that
(CMP) that boots unmodified Solaris 10. The GEMS Ruby attempt, we used the GTgraph graph generator [4] to cortstruc
module provides detailed memory system simulation and forgraphs withl0K vertices from the following families:
non-memory instructions behaves as an in-order singleeiss ~ Random: Their m edges are constructed choosing a ran-
processor, executing one instruction per simulated cycle. ~ dom pair among: vertices.

Hardware TM is supported in GEMS through the LogTM- ~ R-MAT: Constructed using the Recursive Matrix (R-MAT)
SE subsystem [19]. It is built upon a single-chip CMP systemgraph model [6].
with private per-processor L1 caches and a shared L2 cache. | SSCA#2:Used in the DARPA HPCS SSCA#2 graph anal-
featureseager version managementhere transactions write Ysis benchmark [3].
the new memory values “in_p|ace", after Sa\/ing the old value Table 2 summarizes the characteristics of the graphs used.
in a log. It also supportsager conflict detectigras conflicts, ~ To obtain an estimate of possible speedups, we profiled the se
i.e. overlaps between the write set of one transaction aad thrial execution of Dijkstra’s algorithm on each graph in artte
write or read set of other concurrent transactions, arectite ~ Calculate the distribution of the sequential, EgtractMin
at the very moment they happen. On a conflict, the offendingPPerations, and the parallelizable partsDexreaseKey op-
transaction stalls and either retries its request hopiagttie erations. In the ideal case where parallel execution wowld-m
other transaction has finished, or aborts if LogTM detects a@de to zero out the time spent for edge relaxations, the speed
potential deadlock. The aborting processor uses its logtou Would be 5207 This is presented in the sixth column
the changes it has made and then retries the transactioar In 00f Table 2 and constitutes a theoretical upper bound for any
experiments we used tHéYBRID conflict resolution policy, ~Performance improvement.
which tends to favor older transactions against younges.one
Table 1 shows the configuration of the simulation framework. 3.3 Results

For our programs we used the Pthreads library for thread
creation and conventional synchronization operationf stsc Figure 8 shows the speedups of all evaluated schemes. Con-
spin-locking and barriers. For our “perfect” barriers, we e sistently to the discussion in Section 2, the concurrergattir
coded a global barrier as a single assembly instructiofpéxp accesses to shared data implemented with the aid ofcg- (
ing the functionality offered by Simics’ magic instructmn tm andfgs-tn) clearly outperforms the ones using traditional

rand-10000x10000 rand-10000x100000 rand-10000x200000

15 T T T T T T T T 15 T T T T T T T T 15 T T T
1.4 14 1.4
13 13 al 13
12 12 12 B A —
S 11 S 11p S 11 ¥
2 1 2 1 g % % 2 s 1 P
B e S
g o9 2 o9 ;(//r P 2 ool §/ — |
.. B B8 58 e
T 08 gy L 3 08B
§ o7 g o7 3w
2 os 2 o6 £ os
£ 05 £ o5 £ 05
5 5 5
S 0.4 -perfbartcgs-lock —&— S 04 perfbar+cgs-ock —8— S 04 rperfbartcgs-lock —&—
0.3 rperfbar+cgs-tm —— 0.3 rperfbar+cgs-tm —— 0.3 rperfbar+cgs-tm ——
0.2 Hperfbar+fgs-lock —a 0.2 Hperfbar+fgs-lock —a 0.2 Hperfbar+fgs-lock —a—
0.1 |perfbartfgs-tm —k— 0.1 |jperfoar+fgs-tm —— 0.1 |perfbartfgs-tm —k—
.O elper ——)))) '0 helper —o—) . .) .O elper —— . . .)
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of threads Number of threads Number of threads
@ (b) ©
rmat-10000x10000 rmat-10000x100000 rmat-10000x200000
15 T T T T T T T T 15 T T T T T T T T 15
1.4 14 1.4
13 13 13
12 12 12 & o 9 06— ©
S 11 S 11 S 11
! g 1 W ! /W i S
o A A
R e e e Rl i e e = S & 09T e
g 08 & £ g 08 g 08T
T 07 s T 07 S o7
2 o6 2 06 S 06
£ 05 £ o5 £ o5
5 5 5
S 0.4 -perfbartcgs-lock —=— S 04 perfbar+cgs-ock —=— S 0.4 -perfbartcgs-lock —8—
0.3 rperfbar+cgs-tm —— 0.3 rperfbar+cgs-tm —— 0.3 rperfbar+cgs-tm ——
0.2 |-perfbar+fgs-lock —a— 0.2 Hperfbar+fgs-lock —a 0.2 Hperfbar+fgs-lock —a—
01 | perfbar+fgs-tm —k— 01 | |perfbar+fgs-tm —k— 01 | perfbar+fgs-tm —k—
.O elper ——)))) '0 helper —o—) . .) .O elper —— . . .)
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of threads Number of threads Number of threads
(d) () ®
ssca2-10000x28351 ssca2-10000x118853 ssca2-10000x177425
15 15 15 T T
1.4 14 14
——
13 13 F 13 W —
12 12 A 12
S 11 2 11 AN — % S 11t %\x?—*’"* o e
3 1 2 1 e — A e ¥ 3 1 -
3 09 2 ool o~ - - 3 09
2 . 2 . ¥ w @ . . - - s
T 08 g - g 08 [G—-=8 = = TR 3 08 f-B—F w e
S o7 o € o7 /.//‘/ S o7 ///—
£ o6 £ os 2 o6
% 05 % 0.5 % 05
S 04 perfbar+cgs-lock B S 04 rperfbartcgs-lock B S 04 perfbar+cgs-lock B
0.3 perfbar+cgs-tm —— 0.3 perfbar+cgs-tm —— 0.3 rperfbar+cgs-tm ——
0.2 [pperfbar+fgs-lock — 0.2 perfbar+fgs-lock —a 0.2 pperfbar+fgs-lock ——
01k erfbar+fgs-tm —k— 01 | |perfbar+fgs-tm —%— 01 b erfbar+fgs-tm —k—
o elper —o— . . .) B lhelper —— . . .) o elper —o— . . .)
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of threads Number of threads Number of threads
) (h) @

Figure 8: Multithreaded speedups for the graphs tested.

synchronization primitivescgs-lockand fgs-locR. This fact versely, sparse graphs leave limited space for paralléésuat
reveals the existence of fine-grain parallelism in the upglat ~ ing to low performance. Therefore they can serve as tesscase
the priority queue of the algorithm, in the sense that, stiati for the overhead of the co-existence of numerous threads. Th
cally, it is highly probable that the paths of various coment results for these cases are shown in Figures 8a, 8d and 8g. It
updates do not overlap. Thus, optimistic parallelism seams is obvious that théaelperscheme is the more robust one, as it
good approach for Dijkstra’s algorithm. exhibits the smallest slowdown. In the worst case, the perfo

Nevertheless, only by employing “perfect” barriers are theMance of the main thread is degraded by aroL0td.
TM-based schemes able to outperform the serial case. There-
fore, the fine-grain parallelism exposed by the inner loohef
algorithm, is not sufficient to achieve significant perforroa
improvement. On the contrary, the helper threading scheme A closer ook at the results reveals that the main thread suf-
(helpen, which exploits parallelism at a coarser granularity, is fgrs g really low number of aborts (less théii of the total
able to achieve significant speedups in the majority of tsesa aports). This means that even when the helper threads are not
(6 out of 9 experiments). The maximum speedup achieved igontributing any useful work, they still do not obstruct thain
1.46 as shown in Figure 8c. thread’s progress. Therefore, the main thread is allowed to
For more dense graphs, the performance improvements amein almost at the speed of the serial execution, thus exptain
greater since more parallelism can be exposed in the inopr lo the robustness of the scheme. The low overhead dfi¢tzer
of the algorithm. These are the cases wheekperachieves scheme is also illustrated by the fact that the addition ofemo
the best speedups and scalability (Figures 8c, 8f and 8i)- Co threads does not lead to performance drops in any case.

4 Related Work low performance even if the necessary barriers are replaged
ideal ones. To deal with this we employ Transactional Mem-

A significant part of Dijkstra’s execution is spent in up- ory (TM), which reduces synchronization overheads, bilt sti

dates in the priority queue. Therefore, enabling conctrrenfails to provide meaningful overall performance improvertye

accesses to this structure seems a good approach to incres&gspeedups can be achieved in some test cases only with using

performance. Brodal et al. [5] utilize a number of processor ideal barriers. To improve the performance further, we psep

to accelerate thBecreaseKey operation and discuss the ap- an implementation based on TM and Helper Threading, that is

plicability of their approach to Dijkstra’s algorithm. Hewer, able to provide significant speedups (reaching up.46) in

this work is evaluated on a theoretical Parallel Random Asce the majority of the simulated cases.

Machine (PRAM) execution model. Hunt et al. [12] implement As future work, we will investigate the application of these

a concurrent priority queue which is based on binary heapgechniques on other algorithms solving the SSSP problem,

and supports parallel Insertions and Deletions using firaing such asA-stepping [16] and Bellman-Ford [8]. We also aim

locking on the nodes of the binary heap. Since these opagatio to explore the impact of various TM characteristics on the be

do not traverse the entire data structure, local lockingdaa havior of the presented schemes, such as the resolutiaypoli

performance gains. However, in the caseDefcreaseKey version management and conflict detection. Finally, prielim

which performs wide traversals of the data structure itdégs ~ nary results demonstrated interesting variations in thédaive

performance greatly, unless special hardware synchriimiza parallelism between different execution phases, motigais

is supported by the underlying platform. to explore more adaptive schemes in terms of the number of
To expose more parallelism, it would be beneficial to con-parallel threads and the tasks assigned to them.

currently extract a large humber of nodes from the priority

queue. This can be achieved if several nodes have equal diReferences

tances from the sef of visited nodes. Thus, if the prior-

ity queue is organized into buckets of nodes with equal dis- [1] wisconsin multifacet gems simulator. http://www.cs.
tances, then the extraction and neighbor updates can be done wisc.edu/gems/

in parallel per bucket (Dial’'s algorithm [9]). A generaltzn [2] A.-R. Adl-Tabatabai, C. Kozyrakis, and B.E. Saha. Utkiog

of Dial's algorithm calledA-stepping is proposed by Meyer concurrency: Multicore programming with transactionalnme
and Sanders [16]. Madduri et al. [13] ugestepping as the ory. ACM Queue4(10):24-33, 2006.

base algorithm on Cray MTA-2, an architecture that exploits [3] p A Bader and K. Madduri. Design and implementationte t
fine-grain parallelism using hardware synchronizatiompri hpcs graph analysis benchmark on symmetric multiprocessor
tives, and achieve significant speedups. In the ParallesBoo In HiPC, 2005.

Graph Library [10] Dijkstra’s algorithm is parallelizedrfa [4] D.A. Bader and K. Madduri. Gtgraph: A suite of synthetic
distributed memory machine. The priority queue is distiu graph generators. 2006ttp://www.cc.gatech.edu/

in the local memories of the system nodes and the algorithmis ~kamesh/GTgraph/
divided in supersteps, in which each processor extractsla no [5] G.S. Brodal, J.L. Traff, C.D. Zaroliagis, and I. Stadtda A

from its local priority queue. The aforementioned appresch parallel priority queue with constant time operatiodsurnal of

are based on significant modifications to Dijkstra’s alduonit Parallel and Distributed Computingt9:4-21, 1998.

to enable coarse-grain parallelism and lead to promisingpa 6] . Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A reiver

lel implementations. In this paper we adhere to the pure-Dijk model for graph mining. IKCDM, 2004.

stra’s algorithm to face the challenges of its parallei@aand [7] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y. Lee

test the applicability of TM and HT. . D. Lavery, and J. P. Shen. Speculative precomputation: Long
TM has attracted extensive scientific research during ste la range prefetching of delinquent loads.ISCA 2001.

few years, focusing mainly on its design and implementation (g 11 cormen, C.E. Leiserson, R.L. Rivest, and C. Stditro-

details in software and hardware. Nevertheless, its effioac duction to Algorithms The MIT Press, 2001.

a wide selt of real, non-trlv:al applications is only”ntl)_w Btagl [9] R. Dial. Algorithm 360: Shortest path forest with topgioal
to be _eXp ore(_i. Scott et al. [17] use TM to par_a elize !I)e au- ordering. Communications of the ACM2:632—633, 1969.
nay triangulation and Watson et al. [18] exploit it to pazhie

Lee’s routing algorithm. Moreover, a set of TM applicatiasns [10] N. Edmonds, A. Breuer, D. Gregor, and A. Lumsdaine. Eing

source shortest paths with the parallel boost graph libtar§th

offered in STAMP [21]. DIMACS Implementation Challeng2006.
. [11] M. Herlihy and E. Moss. Transactional memory: Architeal
5 Conclusions — Future work support for lock-free data structures. IBCA 1993.
) _ o) - [12] G.C. Hunt, M.M. Michael, S. Parthasarathy, and M.L. co

This work applies several parallelization techniques to Di An efficient algorithm for concurrent priority queue heajst.
jkstra’s algorithm, which is known to be hard to parallelize Proc. Letters60:151-157, 1996.
The schemes that parallelize each serial step by incorporat13] K. Madduri, D.A. Bader, J.W. Berry, and J.R. Crobak. def
ing traditional synchronization primitives (locks and ters) shortest path algorithms for solving large-scale instantredth
fail to outperform the serial algorithm. In fact, they exiib DIMACS Implementation Challeng2006.

[14] P.S. Magnusson, M. Christensson, J. Eskilson, D. Fersg
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platfornCom-
puter, 35(2):50-58, 2002.

[15] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu,
A. Alameldeen, K. Moore, M. Hill, and D. Wood. Mul-
tifacet's general execution-driven multiprocessor samod
(gems) toolsetSIGARCH Comput. Archit. New83(4):92-99,
2005.

[16] U. Meyer and P. Sanders. Delta-stepping: A paralleglsin
source shortest path algorithm. ESA 1998.

[17] M. L. Scott, M. F. Spear, L. Daless, and V. J. Marathe.dDeky
triangulation with transactions and barriers.lIBWC 2007.

[18] I. Watson, C. Kirkham, and M. Lujan. A study of a transaxél
parallel routing algorithm. I#ACT, 2007.

[19] L. Yen,J. Bobba, M.R. Marty, K.E. Moore, H. Volos, M.DilH

M.M. Swift, and D.A. Wood. Logtm-se: Decoupling hardware
transactional memory from caches.Hi®CA 2007.

[20] W. Zhang, B. Calder, and D.M. Tullsen. An event-drivenlti
threaded dynamic optimization framework. RACT, 2005.

[21] C.Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun STRM
Stanford Transactional Applications for Multi-Procegginin
IISWC2008.

