
Message-Passing Code Generation for

Non-rectangular Tiling Transformations

Georgios Goumas, Nikolaos Drosinos, Maria Athanasaki and

Nectarios Koziris

National Technical University of Athens

Computing Systems Laboratory

Abstract

Tiling is a well known loop transformation used to reduce communication over-
head in distributed memory machines. Although a lot of theoretical research has
been done concerning the selection of proper tile shapes that reduce processor idle
times, there is no complete approach to automatically parallelize non-rectangularly
tiled iteration spaces and consequently there are no actual experimental results
to verify previous theoretical work on the effect of the tile shape on the overall
completion time of a tiled algorithm. This paper presents a complete end-to-end
framework to generate automatic message-passing code for tiled iteration spaces. It
considers general parallelepiped tiling transformations and convex iteration spaces.
We aim to address all problems concerning data parallel code generation efficiently
by transforming the initial non-rectangular tile to a rectangular one. In this way,
data distribution and the respective communication pattern become simple and
straightforward. We have implemented our parallelizing techniques in a tool which
automatically generates MPI code and run several benchmarks on a cluster of PCs.
Our experimental results show the merit of general parallelepiped tiling transforma-
tions, and verify previous theoretical work on scheduling-optimal, non-rectangular
tile shapes.

Key words: Loop tiling, clusters, data parallel, code generation, MPI.

Preprint submitted to Elsevier Science 26 June 2006

1 Introduction

Tiling or supernode transformation is one of the most popular loop trans-
formations discussed in literature, proposed to enhance cache locality in uni-
processors and exploit coarse-grain parallelism in multiprocessors. Previous
work on tiling for locality in uniprocessor systems addresses issues such as
selecting loop transformations which increase locality of references in caches
([29]), as well as determining the appropriate tile size ([19]). The correspond-
ing results are very well established and many of the proposed techniques
have been incorporated in research and commercial compilers. On the other
hand, when tiling for parallelism is concerned, the application of the related
theoretical methods in real compilers is rather limited. In this case, each tile
groups together a number of iterations, which are executed uninterruptedly,
while communication between processors occurs just before and after the com-
putations within a tile, in order to reduce the communication frequency and
volume. Under this scheme, a lot of discussion has been made concerning the
selection of an “optimal” tiling transformation. Similar to the case of tiling
for locality, controlling the tile size is of the utmost importance, since large
tile sizes reduce the overall communication whereas small ones provide more
parallelism. Another very important factor is the tile shape. While tiles con-
structed to achieve locality in the memory hierarchy are always rectangular
due to linear memory layouts, it has been shown that this is not always the
optimal case when tiling for parallelism.

The tile shape affects inter-processor communication. Ramanujam and Sa-
dayappan in [23] first emphasized on the use of non-rectangular tiles in or-
der to minimize inter-processor communication. Specifically, they showed the
equivalence between the problem of finding a set of extreme vectors for a given
set of dependence vectors and the problem of finding a tiling transformation
H that produces valid, deadlock-free tiles. Since the tiling planes hi are de-
fined by a set of extreme vectors, they gave a linear programming formulation
for the problem of finding optimal shape tiles, thus determining optimal H
that reduces communication. Boulet et al. in [6] used a per tile communication
function that has to be minimized by linear programming approaches. Based
on this function, Xue in [31] presented a complete method to determine the
tiling transformation H , which imposes minimum communication.

More importantly, the tile shape also greatly affects the overall completion
time of an algorithm. In [16,9] the authors present analytical expressions of the
idle time of a processor for 2-dimensional tiled spaces. This idle time is either

Email addresses: goumas@cslab.ece.ntua.gr (Georgios Goumas),
ndros@cslab.ece.ntua.gr (Nikolaos Drosinos), maria@cslab.ece.ntua.gr
(Maria Athanasaki), nkoziris@cslab.ece.ntua.gr (Nectarios Koziris).

2

the time a processor is waiting for data from another processor, or the time
spent by a processor at a barrier waiting for other processors to accomplish
their tasks. It is shown that the idle time depends on a parameter that relates
the size of the tile to the size of the iteration space. Hodzic and Shang in
[14] discussed the effect of the tile shape and size on the overall completion
time of an algorithm taking into account the iteration space bounds. However,
they are restricted to rectangular spaces and tiles. In [15], Hodzic and Shang
proved that the scheduling-optimal tile shape, i.e. the one that leads to the
minimum execution time, is derived from the algorithm’s tiling cone. Högstedt
et al. in [17] and [18] extend their work from [16] to more deeply nested loops
and also confirm that the vectors forming the basic tile shape should be taken
from the surface of the tiling cone. This means that if we properly scale n
vectors taken from the surface of the tiling cone of an algorithm according to
the bounds of the iteration space, we can simultaneously obtain scheduling-
optimal and communication-minimal tiling. The problem of determining the
tile size (i.e. properly scaling the basic tile shape taken from the surface of
the tiling cone in our context) was also attacked by Andonov et al. in [4] and
Xue and Cai in [32]. The general problem is an extremely complex one, so the
results given in [4,32] suppose some restrictions: the loops are 2-dimensional
and one of the tile boundaries is parallel to the iteration space boundaries.
Their solution is obtained by formulating and resolving a discrete nonlinear
optimization problem.

Despite all these methods for the selection of a proper tiling transformation
to minimize communication volume and overall execution time in distributed
memory machines, general parallelepiped tiling is not used either in commer-
cial or in research compilers ([2,3,8,11,26]). This is due to the fact that no
complete approach has been presented concerning implementation issues for
non-rectangular tiling transformations. In general, the parallelizing compiler
community has been pessimistic about generating code for non-rectangular
tiling transformations. On the other hand, all this theoretical work needs to be
experimentally verified. Note that, besides [4] and [32] that present experimen-
tal results for 2-dimensional spaces, all previous research is purely theoretical.
The main question is whether the overhead imposed by enumerating general
parallelepiped tile shapes is annihilated by the theoretically proven gain in
overall execution time, since non-rectangular tiles may lead to a reduction in
idle time in the context of [9,16,17].

Furthermore, in the majority of the problems where tiling is a candidate trans-
formation to attain higher performance, rectangular tile shapes are not valid.
The problem occurs when there are negative coefficients in some dependence
vectors. In these cases, the parallel execution of rectangularly tiled iteration
spaces would result in a deadlock ([24]). There are two ways to overcome
the problem: one can either apply skewing transformation in order to convert
all dependence elements into nonnegative (or equivalently transform the loop

3

nest into a fully permutable one [30]), or apply a valid non-rectangular tiling
transformation to the original iteration space. Both approaches present similar
complexities in the automatic generation of parallel code.

Motivated by the above facts, we aim to parallelize n-dimensional loops that
have been transformed by non-rectangular tiling transformations. Our goal is
to provide a method to generate parallel code for non-rectangular tile shapes
and investigate the effect of the tile shape on real applications in order to ver-
ify previous theoretical work. We focus on the tile shape, since the results for
the tile size are not yet general and well understood. We present a complete
approach to automatically generate data-parallel code for arbitrarily tiled it-
eration spaces to be executed on distributed memory machines. We address
issues such as transformed loop bound calculation, iteration and data distri-
bution and automatic message passing code generation. In order to efficiently
generate data-parallel code and keep the relative overhead imposed by non-
rectangular tiles as low as possible, we continue previous work on efficient
sequential tiled code generation. More specifically, in [12] we presented an ap-
proach to drastically reduce the compilation time for tiled iteration spaces. We
transformed the generally non-rectangular tile into a rectangular one using a
non-unimodular transformation H ′ directly deriving from the tiling transfor-
mation H . We called the transformed (rectangular) tile in the axes origins
the Transformed Tile Iteration Space (TTIS). We used the Hermite normal
form H̃ ′ of H ′ to determine the exact bounds and strides of the loop that will
traverse the TTIS. The introduction of the TTIS significantly reduces the dif-
ficulty brought about by parallelepiped tile shapes, as far as code generation
is concerned. In addition, the generated code is much more efficient, avoid-
ing unnecessary computations for boundary calculations. We shall continue
using this transformation in the parallelization process. We assign chains of
transformed rectangular tiles to each processor and allocate proper local data
spaces. Using H ′, local iteration and data spaces are both rectangular, en-
abling efficient memory management, while translation between the two local
spaces is also simple and straightforward. In addition, following this scheme,
we deduce very simple compile-time criteria to determine the communication
points. Thus, we parallelize tiled iteration spaces with a negligible compile-
time and run-time overhead, completely dwarfed by the considerable gain in
parallel execution speedup.

We have implemented a tool that automatically generates data parallel MPI
code and run several benchmarks (SOR, Jacobi, ADI) on a cluster of worksta-
tions interconnected via FastEthernet. Our goal is to accentuate the merit of
non-rectangular tiling transformations and to verify previous theoretical work
proposing the selection of a tiling transformation parallel to the tiling cone.
Indeed, our experimental results show that a proper non-rectangular tiling
transformation can lead to a remarkable increase in execution speedups. Sum-
marizing, this paper makes the following contributions:

4

• It presents an efficient end-to-end method to generate data-parallel code for
non-rectangular tiling transformations.

• It experimentally verifies previous theoretical work on determining proper
tile shapes to reduce processor idle times.

The rest of the paper is organized as follows: In Section 2 we define our prob-
lem domain along with some notation used throughout the paper, we describe
tiling transformation and review previous work on efficient sequential tiled
code generation. In Section 3 we present our implementation framework in-
cluding computation distribution and data distribution, while Section 4 dis-
cusses message passing code generation. Section 5 presents experimental re-
sults from the application of our method to real problems. Finally, Section 6
summarizes our results. Appendix A gives theoretical proofs of lemmas pre-
sented throughout the paper and Appendix B summarizes the notation used.

2 Preliminary Concepts

2.1 Domain of the Algorithms

In this paper we consider problems with perfectly nested FOR-loops with uni-
form and constant dependencies (as in [27]). That is, our algorithms are of the
form shown in Algorithm 1.

Algorithm 1 Algorithmic model
FOR j1 = l1 TO u1 DO

FOR j2 = l2 TO u2 DO

...

FOR jn = ln TO un DO

A[fw(j)] := F (A[fw(j − d1)], . . . , A[fw(j − dq)]);

where: (1) j = (j1, . . . , jn), (2) di = (di1, . . . , din), (3) l1 and u1 are rational-
valued parameters, (4) lk and uk (k = 2, . . . , n) are of the form: lk = max(�fk1(j1,
. . . , jk−1)�, . . . , �fkr(j1, . . . , jk−1)�) and uk = min(�gk1(j1, . . . , jk−1)�, . . . , �gkr

(j1, . . . , jk−1)�), where fki and gki are affine functions, (5) fw is a 1-1 function.
We are dealing with general and parameterized convex spaces, with the only
assumption that the iteration space is defined as the intersection of a finite
number of semi-spaces of the n-dimensional space Zn. The requirement for per-
fectly nested loops is a trivial one so that loops can be tiled ([6,23,31]). The
dependencies are considered uniform and constant, i.e. independent of the in-
dexes of computations, and are expressed by dependence vectors d1, d2, . . . , dq.

5

The rank of the dependence matrix is n, i.e we are considering DOACROSS loop
nests. If the rank of the dependence vector matrix is nd < n, then the iteration
space contains DOALL parallelism and can thus be divided into independent
sets of iterations ([25,10]), which are assigned to different processors and thus
coarse-grain parallelism can be achieved without tiling. Although tiling was
proposed with dependence notations looser than constant dependence vectors
(e.g. dependence cone), we have to strengthen this requirement to constant
dependence vectors in order to determine the communication sets. In addi-
tion, we require that there are no anti or output dependencies so that each
iteration writes to a distinct memory location. Techniques to remove anti and
output dependencies are presented in [7]. To simplify our model, we consider
single assignment statements with one array variable. Note, however, that this
is only a notational restriction, since all of the techniques presented in this
paper can be easily adapted to multiple statements on multiple arrays.

Problems that follow the above model very commonly arise from the discretiza-
tion of Partial Differential Equations (PDEs) using explicit finite-differencing
schemes ([22,1,20]) or in image processing functions like smoothing, sharpen-
ing, noise reduction, edge detection etc. ([28]). In the majority of the above
problems rectangular tiling transformations are invalid, since some depen-
dence vectors contain negative elements (see [24]). This happens because the
algorithms under consideration are derived by iterative calculations in each
iteration point using information from points that surround it in space (e.g.
calculation of the mean value of neighboring points in image processing). Thus,
the process presented in this paper can be utilized to automatically generate
parallel code and achieve coarse-grain parallelism for this large class of appli-
cation, that cannot be transformed by a human developer using a rectangular
tiling transformation.

2.2 Notation

Throughout this paper the following notation is used: Z is the set of integers,
n is the number of nested FOR-loops of the algorithm and q is the number
of dependence vectors. If A is a matrix, we denote aij the matrix element
in the i-th row and j-th column. We denote a vector as a or �a according to
the context. The k-th element of the vector is denoted ak. The dependence
matrix of an algorithm is the set of all dependence vectors: D = [d1, d2, . . . , dq].
Jn ⊂ Zn is the set of indexes, or the Iteration Space of an algorithm: Jn =
{j = (j1, ..., jn)|ji ∈ Z ∧ li ≤ ji ≤ ui, 1 ≤ i ≤ n}. Each point in this n-
dimensional integer space is a distinct instance of the loop body. Accordingly,
the Data Space, denoted DS, is defined as: DS = {fw(j)|j ∈ Jn}, where fw

is the write array reference.

6

2.3 Tiling Transformation

In a tiling transformation, the index space Jn is partitioned into identical
n-dimensional parallelepiped areas (tiles or supernodes) formed by n indepen-
dent families of parallel hyperplanes. Tiling transformation is defined by the
n-dimensional square matrix H . Each row vector of H is perpendicular to one
family of hyperplanes forming the tiles. Dually, it can be defined by matrix
P , which contains the side-vectors of a tile as column vectors. Observe that
P = H−1. The tile size is given by |det(P)| = 1/|det(H)|. Formally, tiling
transformation is defined as follows:

r : Zn −→ Z2n, r(j) =

⎡
⎢⎣ �Hj�

j − H−1�Hj�

⎤
⎥⎦

where �Hj� identifies the coordinates of the tile that iteration point j ∈ Jn

is mapped to and j − H−1�Hj� gives the coordinates of j within that tile
relative to the tile origin. Thus the initial n-dimensional iteration space Jn

is transformed to a 2n-dimensional one, the space of tiles and the space of
indexes within tiles. In the following we define two useful spaces, the Tile
Iteration Space, the Tile Space and the Tile Dependence Matrix; all closely
associated to the tiling transformation H .

Definition 1 The Tile Iteration Space (TIS) is defined as: TIS(H) = {j ∈
Zn|�Hj� = 0}

Definition 2 The Tile Space JS is defined as: JS(Jn, H) = {jS|jS = �Hj�, j ∈
Jn}

Definition 3 The Tile Dependence Matrix DS is defined as: DS = {dS|dS =
�H(j + d)�, d ∈ D, j ∈ TIS}

According to the above, Jn H−→ JS. For simplicity reasons we shall refer to
TIS(H) as TIS and to JS(Jn, H) as JS. Note that TIS contains all points
that belong to the tile starting at the axes origin, JS contains the images of
all points j ∈ Jn according to the tiling transformation and DS contains the
dependencies between tiles.

2.4 Sequential Tiled Code Generation

In [12] we have presented a complete method to efficiently generate sequential
tiled code, that is, code that reorders the initial execution of the algorithm
according to a general tiling transformation H . The tiled iteration space is

7

now traversed by a 2n-dimensional loop, the n outermost loops enumerating
the tiles and the n innermost ones sweeping the points within a tile. We
presented an efficient method to calculate the lower and upper bounds (lSk and
uS

k respectively) for a loop control variable jS
k belonging to the n outer loops.

In order to calculate the corresponding bounds for the n innermost loops,
we transformed the original non-rectangular tile to a rectangular one, using
a non-unimodular transformation H ′ directly derived from H . Specifically,
H ′ = V H , where V is a n × n diagonal matrix such that vkkhk ∈ Zn, and hk

is the k-th row of H ([12]). The inverse of matrix H ′ is denoted P ′. We shall
continue using this transformation in the parallelization process.

P’

H’

j
1

j
2

j'
1

j'
2

Tile Iteration Space (TIS)

Transformed Tile

Iteration Space (ΤTIS)

c
2
=h

22
=5

~

a
21
=h

21
=2

~

c
1
=h

11
=1

~

Fig. 1. Traverse the TIS using a non-unimodular transformation and steps, incre-
mental offsets derived from matrix H̃ ′

In order to make this paper more self contained, we need to introduce some
basic concepts and notations found in greater detail in [12]. Figure 1 shows the
transformation of the TIS into a rectangular space called the Transformed Tile
Iteration Space TTIS using matrices H ′ and P ′. If jS ∈ JS and j′ ∈ TTIS,
the corresponding j ∈ Jn is: j = PjS + P ′j′. Code generation for the loop
that will traverse the TTIS is straightforward. The lower and upper bounds
of control variable j′k (l′k and u′

k respectively) can be easily determined, since
it is true that l′k = 0 and u′

k = vkk − 1 (for boundary tiles these bounds can
be corrected using inequalities describing the original iteration space). Note
that each loop control variable may have a non-unitary stride and non-zero
incremental offsets. We shall denote the incremental stride of control variable
j′k as ck. In addition, control variable j′k may have k − 1 incremental offsets,
one for the increment of each of the k−1 outermost control variables, denoted
akl (l = 1, . . . , k − 1). In [12] it is proven that strides and initial offsets in our
case can be directly derived from the Hermite Normal Form (HNF) of matrix

8

H ′, denoted H̃ ′. Specifically, ck = h̃′
kk and akl = h̃′

kl (Figure 1).

3 Computation and Data Distribution

The parallelization of the sequential tiled code involves issues such as compu-
tation distribution, data distribution and communication between processors.
Tang and Xue in [27] addressed the same issues for rectangularly tiled itera-
tion spaces. We shall generate efficient data parallel code for non-rectangular
tiles without imposing any further complexity. The underlying architecture
is considered a (n − 1)-dimensional processor mesh. Thus, each processor is

identified by a (n − 1)-dimensional vector denoted �pid. Note, however, that
this is not a physical restriction, but a convention for processor labelling. The
memory is physically distributed among processors. Processors perform com-
putations on local data and communicate with each other with messages in
order to exchange data that reside to remote memories. In other words, we
consider a message-passing environment (like MPI) over a distributed memory
architecture. The general intuition in our approach is that since the iteration
space is transformed by H and H ′ into a space of rectangular tiles, each pro-
cessor can work on its local share of “rectangular” tiles and, following a proper
memory allocation scheme, perform operations on rectangular data spaces as
well. After all computations in a processor have been completed, locally com-
puted data can be written back to the appropriate locations of the global
data space. In this way, each processor essentially works on iteration and data
spaces that are both rectangular, and properly translates from its local data
space to the global one.

3.1 Computation Distribution

Computation distribution determines which computations of the sequential
tiled code will be assigned to which processor. The n innermost loops of the
sequential tiled code that access the internal points of a tile will not be paral-
lelized, and thus parallelization only involves the distribution of tiles (traversed
by the outermost n-dimensional loop) to processors. Hodzic and Shang in [14]
mapped all tiles along a specific dimension to the same processor and used
hyperplane Π = [1, . . . , 1] as time schedule vector. In addition to this, previous
work [5] in the field of UET-UCT task graphs has shown that if we map all
tiles along the dimension with the maximum length (i.e. maximum number of
tiles) to the same processor, then the overall scheduling is optimal, as long as
the computation to communication ratio is one. Figure 2 displays the overall
completion times for different scheduling schemes and mapping dimensions.
The upper two cases ((a) and (b)) correspond to the non-overlapping sched-

9

ule, the one used in [14]. In this schedule we have discrete computation and
communication phases (no overlapping occurs). As we can observe, the overall
completion time is independent of the mapping dimension. However, if we map
along the longest dimension (along j1 in Figure 2) we can reduce the number
of processors required (5 processors instead of 7). In the overlapping scheme,
described in [13] (cases (c) and (d)), the processors are able to compute and
communicate at the same time. In this scheme, the mapping dimension is of
great importance, since mapping along j1 leads to a smaller execution time
than mapping along j2. Although we do not implement the overlapping sched-
ule in this paper, we have decided to adopt the above mapping approach, first
because it reduces the number of processors and second because these ad-
vanced overlapping scheduling schemes can be efficiently incorporated in the
future.

T
overall

=11 T
overall

=11

T
overall

=15 T
overall

=17

Π=[1,1]Π=[1,1]

Π=[2,1] Π=[1,2]

(a) (b)

(c) (d)

j
2

j
1

j
1

j
1

j
2

j
2

j
2

P
1

P
2

P
3

P
4

P
5

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

t
1

t
2

t
3

t
4

t
5

t
6

t
7

P
1

P
2

P
3

P
4

P
5

P
6

P
7

j
1

t
8

t
9

t
10

t
11

P
1

P
2

P
3

P
4

P
5

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
12

t
13

t
14

t
15

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

t
12

t
13

t
14

t
15

t
16

t
17

P
1

P
2

P
3

P
4

P
5

P
6

P
7

t
8

t
9

t
10

t
11

Fig. 2. Overall completion times for different scheduling schemes and mapping
dimensions: (a) Non-overlapping Schedule-Mapping along j1 (b) Non-overlapping
Schedule-Mapping along j2 (c) Overlapping Schedule-Mapping along j1 (d) Over-
lapping Schedule-Mapping along j2

Another criterion for the selection of the mapping dimension could be the
minimization of the total communication load. That is, assigning the dimen-

10

sion which imposes most of the communication load to the same processor.
When selecting the tile shape with this technique, (i.e see the one presented
by Xue in [31]), the communication overheads across tile sides are equal. Since
the total communication load of a tiling dimension is equal to the number of
tiles along this dimension multiplied by the communication overhead per tile
across the respective tile side, in this case, the criteria of selecting as mapping
dimension the longest one or the one that minimizes the total communica-
tion load, are coincident. In any case, the following theoretical results can be
applied with no modification, no matter which the mapping dimension is.

Let us denote the m-th dimension as the one with the maximum total length
(or as the mapping dimension selected by any criterion). According to the
above, all tiles indexed by jS(jS

1 , . . . , jS
m, . . . , jS

n), where jS
i = const, i =

1, . . . , m−1, m+1, . . . , n and lSm ≤ jS
m ≤ uS

m are executed by the same proces-
sor. The n − 1 coordinates of a tile (excluding jS

m) will identify the processor

that a tile is going to be mapped to (�pid). All tiles along jS
m (denoted also

as tS) are sequentially executed by the same processor, one after the other,
in an order specified by a linear time schedule. This means that, after the
selection of index jS

m with the maximum trip count, we reorder all indexes so
that jS

m becomes the innermost index. This corresponds to loop index inter-
change or permutation. Since all dependence vectors dS in JS are considered
lexicographically positive, the interchanging or reordering of indexes is valid
([21]).

3.2 Data Distribution

In a distributed memory architecture, the data space of the original algorithm
is distributed among the local memories of the various nodes forming the global
data space. Data distribution decisions affect the communication volume, since
data that reside in one node may be needed for the computations in another.
In our approach we follow the “computer-owns” rule, which dictates that a
processor owns the data it writes and thus communication occurs when one
processor needs to read data computed by another. Substantially, the memory
space allocated by a processor represents the space where computed data
are to be stored. This means that each processor iterates over a number of
transformed rectangular tiles (TTISs) and can locally store its computed data
to a rectangular data space. At the end of all its computations, the processor
can place its locally computed data to the appropriate positions of the global
Data Space (DS). The data space computed by a tile could be an exact image
of the TTIS, but in this case the holes of the TTIS would correspond to
unused extra space. In addition to the space storing the computed data, each
processor needs to allocate extra space for communication, that is memory
space to store the data it receives from its neighbors. This means that we

11

first need to condense the actual points of the TTIS and second provide
further space for receiving data. Since, after all transformations, we finally
work with rectangular sets, this Local Data Space (denoted LDS) allocated
by a processor, is given by the following definition.

Definition 4 The Local Data Space (LDS) is defined as: LDS = {j′′ ∈
Zn|0 ≤ j′′k < offk + vkk/h̃′

kk, k = 1, . . . , n, k
= m ∧ 0 ≤ j′′m < offm +
|t|vmm/h̃′

mm}, where |t| denotes the number of tiles assigned to the particular
processor.

m
a
p
p
in
g
 d
im
e
n
s
io
n

t=0

t=1

t=2

t=3

j'
1

j''
2

j''
1

j'
2

map-1

map

LDS TTIS

off
1

off
2

Computation space

Communication space

Unused space

Fig. 3. Local Data Space LDS and Transformed Tile Iteration Space TTIS

As shown in Figure 3, the LDS of a processor consists of the memory space
required for packing computed data (black dots) and for unpacking received
data (grey dots) of a tile, multiplied by the number of tiles assigned to the
particular processor. White squares depict unused data. The offset offk, which
expands the space to store received data, derives from the communication cri-
teria of the algorithm, as shown in the next section. Recall that each processor
iterates over the TTIS for as many times as the number of tiles assigned to
that processor. Lemma 1 determines the translation function from TTIS to
LDS, while Lemma 2 determines the inverse translation function from LDS
to TTIS.

Lemma 1 If j′ ∈ TTIS, then its corresponding point in LDS is given by the
following expressions:

j′′k = j′k/h̃′
kk + offk, k
= m

j′′m = (tvmm + j′m)/h̃′
mm + offm,

where t is the current tile.

PROOF. Given in Appendix A.

12

Lemma 2 If j′′ ∈ LDS, then its corresponding point in TTIS is given by the
following expression:

j′ = H̃ ′�x,
where �x is given by:

xk = j′′k − offk − (
∑k−1

l=1 xlh̃′
kl)/h̃′

kk, k
= m
xm = j′′m − offm − tvmm/h̃′

mm − (
∑m−1

l=1 xlh̃′
ml)/h̃′

mm

where t is the current tile.

PROOF. Given in Appendix A.

Function 1 implements map(j′, t) directly from Lemma 1 and thus determines
the memory location in LDS where computation for iteration j′ ∈ TTIS is to
be stored (Figure 3). Obviously, map−1(j′′) (Function 2) implements Lemma 2
and is its inverse. Note that all divisions in the above expressions correspond
to integer divisions. Function 3 implements loc(j) which uses map(j′, t) in or-

der to locate the processor �pid and the memory location j′′ ∈ LDS, where the
computed data of iteration point j ∈ Jn is to be stored. Inversely, Function 4
shows the series of steps in order to locate the corresponding j ∈ Jn for a
point j′′ ∈ LDS of processor �pid. Thus, loc−1() is called by processors at the
end of their computations in order to transit from their LDS to the original
iteration space Jn. In the sequel, the corresponding point in the Data Space
DS is found via fw (Figure 4).

Function 1 map(j′, t)

j′′ = map(j′, t) =

⎧⎪⎨
⎪⎩

j′′k = j′k/h̃′
kk + offk k
= m

j′′m = (tvmm + j′m)/h̃′
mm + offm

Function 2 map−1(j′′)
j′ = map−1(j′′)
t = (j′′m − offm)h̃′

mm/vmm

xk = j′′k − offk − (
∑k−1

l=1 xlh̃′
kl)/h̃′

kk, k
= m
xm = j′′m − offm − tvmm/h̃′

mm − (
∑m−1

l=1 xlh̃′
ml)/h̃′

mm

j′ = H̃ ′�x

Function 3 loc(j)

j′′, �pid = loc(j)
jS = �Hj�
j′ = H ′(j − PjS)
j′′ = map(j′, jS

m − lSm)
�pid = (jS

1 , . . . , jS
m−1, j

S
m+1, . . . , j

S
n)

13

Function 4 loc−1(j′′, �pid)

j = loc−1(j′′, �pid)
j′ = map−1(j′′)
jS = (pid1, . . . , pidm−1, t + lSm, pidm+1, . . . , pidn)
j = PjS + P ′j′

)(ypidLDS

Jn

)(xpidLDS

loc()

loc–1()

fw()

DS

loc()
loc–1()

j2

j1

w1

w2

j2''

j2''

j1''

j1''

Fig. 4. Relations between DS, Jn and LDS

Under our scheme, each processor allocates exactly the amount of local mem-
ory needed for computation and communication (minor over-allocation occurs
in the few boundary tiles). Note that direct allocation of a processor’s share
in the original DS would lead to a waste of memory space, since this generally
non-rectangular share would lead to the allocation of the minimum enclosing
rectangular memory space. Note also that each processor’s share in the orig-
inal DS (the footprint of a tile because of fw) is in general non-rectangular,
even if a rectangular tiling transformation is applied. Our method, however,
forces the local data space of each processor to be rectangular, allowing thus
more efficient memory management. In addition, if we also take into account
that data spaces for common computationally intensive algorithms are very
large, and will probably not fit in each node’s memory, the compression of the
local space to the LDS is in most cases necessary. Eventually, this leads to
a trade-off between computational complexity and allocated memory space,
since extra expressions are needed to address the LDS, but this minor over-
head does not significantly affect performance. Finally, note that storing data
accessed by a non-rectangular tile to a dense rectangular data space also ex-
ploits cache locality.

4 Message-Passing Primitives

Using the iteration and data distribution schemes described before, data that
reside in the local memory of one processor may be needed by another due

14

to algorithmic dependencies. In this case, processors need to communicate
via message-passing. The two fundamental issues that need to be addressed
regarding communication are the specification of the processors each processor
needs to communicate with, and the determination of the data that need to
be transferred within each message.

As far as the communication data are concerned, we focus on the communi-
cation points, as defined below:

Definition 5 Let m be the mapping dimension. Let dS ∈ DS be a tile depen-
dence that implies processor dependence, that is ∃l
= m : dS

l
= 0. A point
j′ ∈ TTIS is considered a communication point respective to dS iff the com-
puted data at iteration j = PjS +P ′j′ is needed by tile jS +dS, where jS ∈ JS

and jS + dS ∈ JS.

Note that since dS implies processor dependence, tiles jS and jS + dS are
essentially computed by different processors. Note also that a communication
point is only defined in respect to a specific tile dependence dS. In other words,
communication points in the TTIS correspond to iterations at which data are
computed by one processor and need to be sent to another processor in tile
direction dS.

We further exploit the regularity of the TTIS to deduce simple criteria for
the communication points at compile time. The following lemma is useful:

Lemma 3 A point j′ = (j′1, . . . , j
′
n) ∈ TTIS corresponds to a communication

point respective to a tile dependence dS = (dS
1 , . . . , dS

n) ∈ DS iff:

j′k ≥ dS
k (vkk − max

d′∈D′{d′
k})

where k = 1, . . . , n, d′ ∈ D′, D′ = H ′D.

PROOF. Given in Appendix A.

Definition 6 The communication vector �CC is defined as �CC = (cc1, . . . , ccn)
where

cck = vkk − max
d′∈D′{d′

k}
and k = 1, . . . , n, d′ ∈ D′, D′ = H ′D.

It is obvious that �CC can be easily calculated at compile time. According to
Lemma 3, �CC can be used to directly determine the communication points:

Corollary 1 Let �CC = (cc1, . . . , ccn) be the communication vector. A point
j′ = (j′1, . . . , j

′
n) ∈ TTIS corresponds to a communication point respective to

15

a tile dependence dS = (dS
1 , . . . , dS

n) ∈ DS iff:

j′k ≥ dS
k cck

where k = 1, . . . , n.

We shall directly apply Corollary 1 in our MPI program to pack all data that
need to be sent to neighboring processors and unpack the data received by each
processor. It should be clear that because of the simplicity of Corollary 1 it is
advantageous to identify the communication data in the TTIS, as opposed to
the other possible alternatives (e.g. the initial iteration space, the TIS etc.)
which would complicate the communication procedure unduly. Also, note that
the offsets in LDS referenced in §3.2 can easily arise as follows:

offk = �max
d′∈D′{d′

k}/ck�, k
= m

and
offm = vmm/cm

Communication takes place before and after the execution of a tile. Before the
execution of a tile, a processor must receive all the essential non-local data
computed elsewhere, and unpack these data to the appropriate locations in its
LDS. Dually, after the completion of a tile, the processor must send part of
the computed data to the neighboring processors for later use. We adopt the
communication scheme presented by Tang and Xue in [27], which suggests a
simple implementation for packing and sending the data, and a more compli-
cated one for the receiving and unpacking procedure. The asymmetry between
the two phases (send-receive) arises from the fact that a tile may need to re-
ceive data from more than one tiles of the same predecessor processor, but it
will send its data only once to each successor processor, satisfying all the tile
dependencies that lead to different tiles assigned to the same successor in a
single message. In other words, a tile will receive from tiles, while it will send
to processors. Let Dm be the projection of DS in the n− 1 dimensions, when
the mapping dimension m is collapsed. Dm expresses processor dependen-
cies, meaning that, in general, processor �pid needs to receive from processors
�pid − dm and send to processors �pid + dm for all dm ∈ Dm. Algorithms 2 and

3 implement the schemes for receive-unpack and pack-send respectively that
have been adopted according to the MPI platform. dm(dS) denotes the pro-
cessor dependence dm that corresponds to a tile dependence dS, while dS(dm)
denotes all tile dependencies dS that generate processor dependence dm. Func-
tion minsucc(�s, dm) denotes the lexicographically minimum successor tile of
tile �s in processor direction dm, while function valid(�s) returns true if tile �s
is enumerated. LA denotes an array in local memory which implements the

16

LDS.

Algorithm 2 RECEIVE(�pid, tS, DS, �CC)
FOR dS ∈ DS DO /*For all tile dependencies...*/

/*...if predecessor tile valid and current tile
lexicographically minimum successor...*/

IF(valid((�pid, tS) − dS) ∧ (�pid, tS)=minsucc((�pid, tS) − dS,dm(dS)))
/*...receive data from predecessor processor...*/
MPI Recv(buffer,Rank(�pid− dm(dS)),...);
/*...and unpack it to LDS of current processor.*/
count:=0;

FOR j′1 = max(l′1, d
S
1 cc1) TO u′

1 STEP=c1 DO

...

FOR j′m = l′m TO u′
m STEP=cm DO

...

FOR j′n = max(l′n, dS
nccn) TO u′

n STEP=cn DO

LA[map(j′,tS − lSn)-(
dS
1 v11

c1
, . . . , dS

nvnn

cn
)]:=buffer[count++];

Algorithm 3 SEND(�pid, tS, Dm, �CC)
FOR dm ∈ Dm DO /*For all processor dependencies...*/

/*...if a valid successor tile exists...*/
IF(∃dS(dm) ∈ DS:valid((�pid, tS) + dS(dm)))

/*...pack communication data to buffer...*/
count:=0;

FOR j′1 = max(l′1, d
m
1 cc1) TO u′

1 STEP=c1 DO

...

FOR j′m = l′m TO u′
m STEP=cm DO

...

FOR j′n = max(l′n, dm
n−1ccn) TO u′

n STEP=cn DO

buffer[count++]:=LA[map(j′,tS − lSn)];

/*...and send to successor processor.*/
MPI Send(buffer,Rank(�pid+ dm),...);

Summarizing, the generated data parallel code for the loop of Algorithm 1
will have a form similar to that shown in Algorithm 4.

Algorithm 4 Final SPMD code
FORACROSS pid1 = lS1 TO uS

1 DO

...

FORACROSS pidn−1 = lSn−1 TO uS
n−1 DO

/*Sequential execution of tiles*/
FOR tS = lSn TO uS

n DO

/*Receive data from neighboring tiles*/
RECEIVE(�pid, tS ,DS , �CC);

/*Traverse the internal of the tile*/

17

FOR j′1 = l′1 TO u′
1 STEP=c1 DO

...

FOR j′n = l′n TO u′
n STEP=cn DO

/*Perform computations on Local Data Space LDS*/
t := tS − lSn ;
LA[map(j′, t)] = F (LA[map(j′ − d′1, t)], . . . , LA[map(j′ − d′q, t)]);

/*Send data to neighboring processors*/
SEND(�pid, tS ,Dm, �CC);

5 Experimental Results

We have implemented our parallelizing techniques in a tool, which automati-
cally generates C++ code with calls to the MPI library, and run our examples
on a cluster with 16 identical 500MHz Pentium III nodes with 256MBs of
RAM. The nodes run Linux with kernel 2.4.20 and are interconnected with
FastEthernet. We used the gcc v.2.95.4 compiler for the compilation of the
sequential programs and mpiCC (which also uses gcc v.2.95.4) for the com-
pilation of the generated data-parallel programs. In both cases the -O2 opti-
mization option was applied. Our goal is to investigate the effect of the tile
shape on the overall completion time of an algorithm. We used three real prob-
lems, Gauss Successive Over-relaxation (SOR), the Jacobi algorithm and ADI
integration. In each case, we applied rectangular and non-rectangular tiling
transformations measured the parallel execution times achieved for various
tile sizes and iteration spaces.

Results for SOR

The SOR loop nest is shown in Algorithm 5.

Algorithm 5 SOR algorithm
FOR t=1 TO M DO

FOR i=1 TO N DO

FOR j=1 TO N DO

A[t,i,j]:=w
4 (A[t,i-1,j]+A[t,i,j-1]+A[t-1,i+1,j]+A[t-1,i,j+1])+

(1-w)A[t-1,i,j];

Since the dependencies contain negative coefficients, the loop needs to be

skewed in order to be rectangularly tiled. As in [31], we use T =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0

1 1 0

2 0 1

⎤
⎥⎥⎥⎥⎥⎦ as

18

skewing matrix. The resulting loop nest is shown in Algorithm 6.

Algorithm 6 Skewed SOR algorithm
FOR t′=1 TO M DO

FOR i′=t′+1 TO t′+N DO

FOR j′=2t′+1 TO 2t′+N DO

t:=t′; i:=-t′+i′;j:=-2t′+j′;
A[t,i,j]:=w

4 (A[t,i-1,j]+A[t,i,j-1]+A[t-1,i+1,j]+A[t-1,i,j+1])+

(1-w)A[t-1,i,j];

The dependence matrix of the skewed SOR is D =

⎡
⎢⎢⎢⎢⎢⎣

1 0 1 1 0

1 1 0 1 0

2 0 2 1 1

⎤
⎥⎥⎥⎥⎥⎦ and the

corresponding tiling cone is defined by the rows of matrix C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

−1 0 1

−2 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Although non-rectangular tiling can be directly applied to the original loop
nest, we choose to apply both rectangular and non-rectangular tiling to the
skewed one, so that the comparison is more obvious. For a non-rectangular
transformation, we select three vectors parallel to the first three lines of matrix

C, i.e. the tiling transformation is of the form: Hnr =

⎡
⎢⎢⎢⎢⎢⎣

1
x

0 0

0 1
y

0

−1
z

0 1
z

⎤
⎥⎥⎥⎥⎥⎦, while the

rectangular tiling transformation is defined by a matrix of the form: Hr =⎡
⎢⎢⎢⎢⎢⎣

1
x

0 0

0 1
y

0

0 0 1
z

⎤
⎥⎥⎥⎥⎥⎦, where x, y, z ∈ Z+. Note that if we select common factors x, y, z

for Hnr and Hr we have equal tile sizes (1/|det(Hr)| = 1/|det(Hnr)| = xyz).
Furthermore, if we map tiles along the third dimension to the same processor,
the communication volume and the number of processors required are the same
in both cases, since the first two rows of the tiling transformation matrices are
identical. Thus, any differences in execution times will be due to the different
scheduling schemes imposed by the different tile shapes.

In order to have a theoretical interpretation of the experimental results that
follow, let us focus on the following general example. The linear scheduling
vector used in our approach is Π = [1, 1, 1]. We denote the last executed point
of the original iteration space as jmax. Obviously, this point will belong to tile

19

�Hjmax� and will be executed at time step t = Π�Hjmax�. In our skewed SOR
example jmax = (M, M + N, M + 2N) and thus, using rectangular tiling, this
point will be executed at time step tr = M

x
+ M+N

y
+ 2M+N

z
. Accordingly, using

non-rectangular tiling, jmax will be executed at tnr = M
x

+ M+N
y

+ 2M+N
z

− M
z

=

tr − M
z

< tr. Thus, we expect non-rectangular tiling to achieve lower execution
times.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Iteration Space 128x128x128

Rectangular Tiling
Non-Rectangular Tiling

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Iteration Space 128x128x256

Rectangular Tiling
Non-Rectangular Tiling

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Iteration Space 128x256x128

Rectangular Tiling
Non-Rectangular Tiling

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Iteration Space 256x128x128

Rectangular Tiling
Non-Rectangular Tiling

Fig. 5. SOR: Execution times for rectangular and non-rectangular transformations
in four iteration spaces

Iteration tr tnr % tr tnr %

Space min min diff. avg. avg. diff.

128 × 128 × 128 12.65 11.76 7.5 15.77 13.56 16.3

128 × 128 × 256 22.5 21.31 5.6 23.51 22.89 2.7

128 × 256 × 128 22.54 18.68 20.6 24.63 21.21 16.1

256 × 128 × 128 40.85 30.37 34.5 41.63 33.15 25.5
Table 1
SOR: Minimum and average execution times (sec) for four iteration spaces

Figure 5 shows execution times for the SOR algorithm for four iteration spaces
and various tile sizes. As theoretically expected, non-rectangular tiling trans-
formation achieves lower execution times in the majority of the cases. Table 1
summarizes the improvement attained by the application of a non-rectangular
tile shape. Quite impressively, the change of only one element in tiling trans-

20

formation matrix H leads to an average 25% reduction in execution times for
iteration space 256 × 128 × 128.

Results for Jacobi

The Jacobi loop nest is shown in Algorithm 7.

Algorithm 7 Jacobi algorithm
FOR t=1 TO T DO

FOR i=1 TO I DO

FOR j=1 TO J DO

A[t,i,j]:=0.25(A[t-1,i-1,j]+A[t-1,i,j-1]+A[t-1,i+1,j]+

A[t-1,i,j+1]);

Note that this loop also needs to be skewed in order to be legally tiled. We

use T =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0

1 1 0

1 0 1

⎤
⎥⎥⎥⎥⎥⎦ as skewing matrix and thus the skewed loop nest is shown

in Algorithm 8.

Algorithm 8 Skewed Jacobi algorithm
FOR t′=1 TO T DO

FOR i′=t′+1 TO t′+I DO

FOR j′=t′+1 TO t′+J DO

t:=t′; i:=-t′+i′; j:=-t′+j′;
A[t,i,j]:=0.25(A[t-1,i-1,j]+A[t-1,i,j-1]+A[t-1,i+1,j]+

A[t-1,i,j+1]);

The dependence matrix of the skewed Jacobi is D =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1

2 1 0 1

1 2 1 0

⎤
⎥⎥⎥⎥⎥⎦ and the cor-

responding tiling cone is C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 1 1

1 −1 1

−1 −1 1

−1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. In this case, in order to have

the same comparison features as in SOR, we applied non-rectangular tiling

transformation defined by Hnr =

⎡
⎢⎢⎢⎢⎢⎣

1
x
− 1

2x
0

0 1
y

0

0 0 1
z

⎤
⎥⎥⎥⎥⎥⎦. If we choose common x, y, z

21

factors and map tiles along the first dimension to the same processor, we have
the same tile size, communication volume and number of processors required
both for rectangular and non-rectangular tiling. Choosing the tile’s cutting
hyperplanes from the surface of the tiling cone would probably lead to lower
total execution times as proven in [15] and [17], but in this case comparison
with rectangular tiling would be difficult, since factors like tile size, commu-
nication volume and number of processors would differ. In this case, we have
jmax = (T, T + I, T + J) and, following similar analysis as in the case of SOR,
we have tr = T

x
+ T+I

y
+ T+J

z
, while tnr = tr − T+I

2x
< tr. Again, we expect

non-rectangular tiling to achieve better execution times.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Iteration Space 128x128x128

Rectangular Tiling
Non-Rectangular Tiling

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Iteration Space 128x128x256

Rectangular Tiling
Non-Rectangular Tiling

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80
T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Iteration Space 128x256x128

Rectangular Tiling
Non-Rectangular Tiling

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Iteration Space 256x128x128

Rectangular Tiling
Non-Rectangular Tiling

Fig. 6. Jacobi: Execution times for rectangular and non-rectangular transformations
in four iteration spaces

In this example, we held y and z factors constant throughout the experiments
in each iteration space and varied factor x in order to test different tile sizes.
Figure 6 shows the parallel execution times for four different iteration spaces
and Table 2 summarizes minimum and average execution times. In this case,
non-rectangular tile shapes achieve a minimum execution-time reduction that
varies between 8.4% and 27.4% and an average execution-time reduction that
varies between 10% and 36.7% throughout the four iteration spaces.

Results for ADI Integration

ADI Integration can be written in the triply nested loop shown in Algorithm 9.

22

Iteration tr tnr % tr tnr %

Space min min diff. avg. avg. diff.

128 × 128 × 128 11.75 10.01 17.3 13.77 12.06 14.2

128 × 128 × 256 21.59 19.11 13 23.26 21.14 10

128 × 256 × 128 19.02 17.55 8.4 24.7 19.2 28.6

256 × 128 × 128 30.98 24.32 27.4 38.3 28.02 36.7
Table 2
Jacobi: Minimum and average execution times (sec) for four iteration spaces

Algorithm 9 ADI algorithm
FOR t=1 TO T DO

FOR i=1 TO N DO

FOR j=1 TO N DO

X[t,i,j]:=X[t-1,i,j]+X[t-1,i,j-1]*A[i,j]/B[t-1,i,j-1]-

X[t-1,i-1,j]*A[i,j]/B[t-1,i-1,j];

B[t,i,j]:=B[t-1,i,j]-A[i,j]*A[i,j]/B[t-1,i,j-1]-

A[i,j]*A[i,j]/B[t-1,i-1,j];

The dependence matrix of ADI integration is D =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ and the corre-

sponding tiling cone is C =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 −1

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦. No skewing is needed in this case,

since all dependence vectors are non-negative. In this experiment series we

used three different non-rectangular matrices defined by: Hnr1 =

⎡
⎢⎢⎢⎢⎢⎣

1
x
− 1

x
0

0 1
y

0

0 0 1
z

⎤
⎥⎥⎥⎥⎥⎦,

Hnr2 =

⎡
⎢⎢⎢⎢⎢⎣

1
x

0 − 1
x

0 1
y

0

0 0 1
z

⎤
⎥⎥⎥⎥⎥⎦ and Hnr3 =

⎡
⎢⎢⎢⎢⎢⎣

1
x
− 1

x
− 1

x

0 1
y

0

0 0 1
z

⎤
⎥⎥⎥⎥⎥⎦. Note that the third one is par-

allel to the directions of the tiling cone. Again here we map tiles along the
first dimension to the same processor. All four transformations applied (the
rectangular and the three non-rectangular ones) have the same tile size, com-

23

munication volume and require the same number of processors. Similar to the
analysis in the previous experiments, since jmax = (T, N, N), it is true that
tr = T

x
+ N

y
+ N

z
, tnr1 = tr − N

y
, tnr2 = tr − N

z
and tnr3 = tr − N

y
− N

z
. Thus,

tnr3 < tnr1, tnr2 < tr.

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Iteration Space 64x128x128

Rectangular Tiling
Non-Rectangular Tiling 1
Non-Rectangular Tiling 2
Non-Rectangular Tiling 3

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Iteration Space 128x128x128

Rectangular Tiling
Non-Rectangular Tiling 1
Non-Rectangular Tiling 2
Non-Rectangular Tiling 3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Iteration Space 128x256x256

Rectangular Tiling
Non-Rectangular Tiling 1
Non-Rectangular Tiling 2
Non-Rectangular Tiling 3

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Iteration Space 256x128x128

Rectangular Tiling
Non-Rectangular Tiling 1
Non-Rectangular Tiling 2
Non-Rectangular Tiling 3

Fig. 7. ADI: Execution times for one rectangular and three non-rectangular 1-3
transformations in four iteration spaces

Iteration tr tnr1 tnr2 tnr3 % tr tnr1 tnr2 tnr3 %

Space min min min min diff. avg. avg. avg. avg. diff.

64 × 128 × 128 2.1 2.02 2.06 1.63 28.8 2.88 2.31 2.33 1.75 64.3

128 × 128 × 128 3.95 3.75 3.77 3.19 23.8 5.69 4.51 4.53 3.32 71.5

128 × 256 × 256 15.67 15.03 15.03 12.7 23.4 22.8 17.82 17.82 13.25 72.1

256 × 128 × 128 7.41 7.15 7.14 6.37 16.3 8.95 7.76 7.78 6.57 36.2
Table 3
ADI: Minimum and average execution times (sec) for four iteration spaces

Figure 7 shows the parallel execution times for four different iteration spaces
and Table 3 summarizes minimum and average execution times. In this set of
experiments, the verification of the theoretical analysis is even more evident.
Indeed, rectangular and non-rectangular transformations attained execution
times sorted exactly as expected by theory. Moreover, we observe the the
best tiling transformation (Hnr3) achieved an impressive reduction in parallel
execution times that reached up to 28.8% in minimum execution times and
71.1% in average ones.

24

6 Conclusions

In this paper we presented a complete approach to generate message-passing
code for iteration spaces transformed by general parallelepiped tiling trans-
formations. We thoroughly addressed issues such as data distribution, itera-
tion distribution and automatic message-passing, and generated efficient data-
parallel code for a cluster of PCs. Our method is based on transforming the
non-rectangular tile into a rectangular one using a non-unimodular transfor-
mation. We have implemented our parallelizing techniques using MPI and run
several experiments in our cluster. After studying the effect of the tile shape
on the overall execution time of an algorithm, we were able to confirm previ-
ous theoretical work, which claims that selecting a tiling transformation from
the sides of the tiling cone leads to optimal scheduling schemes. The method
presented in this paper can be utilized to efficiently execute DOACROSS loop
nests when rectangular tiling transformations are not valid, or when schedul-
ing criteria propose the application of non-rectangular tile shapes in order to
minimize processor idle times.

References

[1] B. D’ Acunto. Computational Methods for Pde in Mechanics. World Scientific
Pub., 2004.

[2] V. Adve and J. Mellor-Crummey. Advanced Code Generation for High
Performance Fortran. In Lecture Notes in Computer Science Series, Compiler
optimizations for scalable parallel systems: languages, compilation techniques,
and run time systems, pages 553–596. Springer-Verlag, 2001.

[3] S. P. Amarasinghe and M. S. Lam. Communication Optimization and Code
Generation for Distributed Memory Machines. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation,
Albuquerque, New Mexico, USA, Jun 1993.

[4] R. Andonov, P. Calland, S. Niar, S. Rajopadhye, and N. Yanev. First Steps
Towards Optimal Oblique Tile Sizing. In Proceedings of the 8th International
Workshop on Compilers for Parallel Computers, pages 351–366, Aussois, Jan
2000.

[5] T. Andronikos, N. Koziris, G. Papakonstantinou, and P. Tsanakas. Optimal
Scheduling for UET/UET-UCT Generalized N-Dimensional Grid Task Graphs.
Journal of Parallel and Distributed Computing, 57(2):140–165, May 1999.

[6] P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate tiling?
INTEGRATION, The VLSI Jounal, 17:33–51, 1994.

25

[7] P. Y. Calland, A. Darte, Y. Robert, and F. Vivien. On the Removal of Anti
and Output Dependences. International Journal of Parallel Programming,
26(2):285–312, 1998.

[8] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran.
Scientific Programming, 1(1):31–50, 1992.

[9] F. Desprez, J. Dongarra, F. Rastello, and Y. Robert. Determining the Idle Time
of a Tiling: New Results. Journal of Information Science and Engineering,
14(1):167–190, Mar 1997.

[10] E. H. D’Hollander. Partitioning and Labeling of Loops by Unimodular
Transformations. IEEE Transactions on Parallel and Distributed Systems,
3(4):465–476, Jul 1992.

[11] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and
M. Wu. Fortran-D Language Specification. Technical Report TR-91-170, Dept.
of Computer Science, Rice University, Dec 1991.

[12] G. Goumas, M. Athanasaki, and N. Koziris. An Efficient Code Generation
Technique for Tiled Iteration Spaces. IEEE Transactions on Parallel and
Distributed Systems, 14(10):1021–1034, Oct 2003.

[13] G. Goumas, A. Sotiropoulos, and N. Koziris. Minimizing Completion
Time for Loop Tiling with Computation and Communication Overlapping.
In Proceedings of IEEE International Parallel and Distributed Processing
Symposium (IPDPS’01), San Francisco, Apr 2001.

[14] E. Hodzic and W. Shang. On Supernode Transformation with Minimized
Total Running Time. IEEE Transactions on Parallel and Distributed Systems,
9(5):417–428, May 1998.

[15] E. Hodzic and W. Shang. On Time Optimal Supernode Shape. IEEE
Transactions on Parallel and Distributed Systems, 13(12):1220–1233, Dec 2002.

[16] K. Högstedt, L. Carter, and J. Ferrante. Determining the Idle Time of a Tiling.
In Proceedings of the 24th ACM Symposium on Principles of Programming
Languages (POPL), pages 160–173, Jan 1997.

[17] K. Högstedt, L. Carter, and J. Ferrante. Selecting Tile Shape for Minimal
Execution time. In Proceedings of the ACM Symposium on Parallel Algorithms
and Architectures, pages 201–211, 1999.

[18] K. Högstedt, L. Carter, and J. Ferrante. On the Parallel Execution Time of
Tiled Loops. IEEE Trans. on Parallel and Distributed Systems, 14(3):307–321,
Mar 2003.

[19] M. Lam, E. Rothberg, and M. Wolf. The Cache Performance and Optimizations
of Blocked algorithms. In Proceedings of the 4th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 63–74, Santa Clara, California, USA, Apr 1991.

26

[20] K. Morton and D. Mayers. Numerical Solution of Partial Differential Equations.
Cambridge University Press, Cambridge, UK, 2005.

[21] D. Padua and W. Wolfe. Advanced Compiler Optimizations for
Supercomputers. Communications of the ACM, 29(12):1184–1201, Dec 1986.

[22] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in
C: The Art of Scientific Computing. Cambridge University Press, New York,
NY, USA, 1992.

[23] J. Ramanujam and P. Sadayappan. Tiling Multidimensional Iteration Spaces
for Multicomputers. Journal of Parallel and Distributed Computing, 16(2):108–
120, 1992.

[24] J. Ramanujam and P. Sadayappan. Tiling Multidimensional Iteration Spaces for
Multicomputers. Journal of Parallel and Distributed Computing, 16:108–120,
1992.

[25] W. Shang and J.A.B. Fortes. Independent Partitioning of Algorithms with
Uniform Dependencies. IEEE Transactions on Computers, 41(2):190–206, Feb
1992.

[26] E. Su, A. Lain, S. Ramaswamy, D. J. Palermo, E. W. Hodges, and P. Banerjee.
Advanced Compilation Techniques in the PARADIGM Compiler for Distributed
Memory Multicomputers. In Proceedings of the 9th ACM International
Conference on Supercomputing (ICS), pages 424–433, Madrid, Spain, Jul 1995.

[27] P. Tang and J. Xue. Generating Efficient Tiled Code for Distributed Memory
Machines. Parallel Computing, 26(11):1369–1410, 2000.

[28] B. Wilkinson and M. Allen. Parallel programming: techniques and applications
using networked workstations and parallel computers. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1999.

[29] M. Wolf and M. Lam. A Data Locality Optimizing Algorithm. In Proceedings
of the ACM SIGPLAN’91 Conference on Programming Language Design and
Implementation (PLDI), pages 30–44, Toronto, Ontario, Canada, Jun 1991.

[30] M. Wolf and M. Lam. A Loop Transformation Theory and an Algorithm
to Maximize Parallelism. IEEE Trans. on Parallel and Distributed Systems,
2(4):452–471, Oct 1991.

[31] J. Xue. Communication-Minimal Tiling of Uniform Dependence Loops. Journal
of Parallel and Distributed Computing, 42(1):42–59, Apr 1997.

[32] J. Xue and W. Cai. Time-minimal Tiling when Rise is Larger than Zero. Parallel
Computing, 28(6):915–939, 2002.

27

APPENDIX A – Theoretical Proofs

Proof of Lemma 1: In order to prove the validity of this transformation, we
need to prove that the resulting point j′′ ∈ LDS. However, for each k
= m

it is true that 0 ≤ j′k < vkk ⇒ 0 ≤ � j′k
h̃′

kk

� < vkk

h̃′
kk

⇒ offk ≤ � j′k
h̃′

kk

� + offk <
vkk

h̃′
kk

+ offk ⇒ offk ≤ j′′k < vkk

h̃′
kk

+ offk. In addition, 0 ≤ j′m < vmm ⇒ 0 ≤
� j′m

h̃′
mm

� < vmm

h̃′
mm

⇒ tvmm

h̃′
mm

+ offm ≤ tvmm

h̃′
mm

+ � j′m
h̃′

mm

� + offm < (t+1)vmm

h̃′
mm

+ offm

Taking into account that 0 ≤ t ≤ |t| − 1, the previous inequality gives

offm ≤ j′′m < |t|vmm

h̃′
mm

+ offm. Therefore, it is true that j′′ = map(j′, t) ∈ LDS.

Proof of Lemma 2: We need to prove that map and map−1 are indeed inverse
functions. Equivalently, we should prove that (i) (j′, t) = map−1(map(j′, t))
and (ii) j′′ = map(map−1(j′′)).

(i) (j′, t) ?
= map−1(map(j′, t)) ⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t
?
= �

((� tvmm+j′m
h̃′

mm

�+offm)−offm)̃h′
mm

vmm
�

∧
j′k

?
=

k∑
i=1

h̃′
kiyi

,

where:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yi = ((� j′i
h̃′

ii

� + offi) − offi) − �
i−1∑
l=1

h̃′
il

yl

h̃′
ii

�, i
= m

ym = ((� tvmm+j′m
h̃′

mm

� + offm) − offm − tvmm

h̃′
mm

) − �
m−1∑
l=1

h̃′
ml

yl

h̃′
mm

�

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⇔

⇔ yi = � j′i
h̃′

ii

� − �
i−1∑
l=1

h̃′
il

yl

h̃′
ii

�

However, t
?
= �

((� tvmm+j′m
h̃′

mm

�+offm)−offm)̃h′
mm

vmm
� ⇔ t

?
= t + �

� j′m
h̃′

mm

�̃h′
mm

vmm
�. From

0 ≤ j′m < vmm ⇒ 0 ≤ � j′m
h̃′

mm

� < vmm

h̃′
mm

⇒ 0 ≤ � j′m
h̃′

mm

�h̃′
mm < vmm ⇒ 0 ≤

�
� j′m

h̃′
mm

�̃h′
mm

vmm
� < 1 ⇒ �

� j′m
h̃′

mm

�̃h′
mm

vmm
� = 0. Thus, t

?
= t + �

� j′m
h̃′

mm

�̃h′
mm

vmm
� ⇔ t

?
= t + 0,

which is always valid.

In addition, from yi = � j′i
h̃′

ii

�−�
i−1∑
l=1

h̃′
il

yl

h̃′
ii

� ⇒ � j′i
h̃′

ii

� = yi + �
i−1∑
l=1

h̃′
il

yl

h̃′
ii

� = �
i∑

l=1

h̃′
il

yl

h̃′
ii

� ⇒

h̃′
ii�

i∑
l=1

h̃′
il

yl

h̃′
ii

� ≤ j′i ≤ h̃′
ii�

i∑
l=1

h̃′
il

yl

h̃′
ii

�+ h̃′
ii − 1. In this interval, there is one and only

one actual point j′i (as h̃′
ii is the step of j′i in order to meet another actual

28

point), which is
i∑

l=1
h̃′

ilyl. Therefore it is true that j′i =
i∑

l=1
h̃′

ilyl.

(ii)

j′′ ?
= map(map−1(j′′)) ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j′′k
?
= �

k∑
l=1

h̃′
klzl

h̃′
kk

� + offk, k
= m

∧

j′′m
?
= �

tvmm+
m∑

l=1

h̃′
ml

zl

h̃′
mm

� + offm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (1)

where:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zl = j′′l − offl − �
l−1∑
i=1

h̃′
lizi

h̃′
ll

�, l
= m

zm = j′′m − offm − tvmm

h̃′
mm

− �
m−1∑
i=1

h̃′
mizi

h̃′
mm

�

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

j′′l = offl + �
l∑

i=1

h̃′
li

zi

h̃′
ll

�, l
= m

j′′m = offm + tvmm

h̃′
mm

+ �
m∑

i=1

h̃′
mizi

h̃′
mm

�
(2)

Therefore, (1)
(2)⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

offk + �
k∑

i=1

h̃′
kizi

h̃′
kk

� ?
= �

k∑
l=1

h̃′
klzl

h̃′
kk

� + offk, k
= m

∧

offm + tvmm

h̃′
mm

+ �
m∑

i=1

h̃′
mizi

h̃′
mm

� ?
= �

tvmm+
m∑

l=1

h̃′
ml

zl

h̃′
mm

� + offm

, which

is obviously always valid, taking into account that vmm is a multiple of h̃′
mm.

After proving claims (i) and (ii), it turns out that Lemma 2 is always valid.

Proof of Lemma 3: For j′ to be a communication point according to the k-th
dimension, we distinguish two cases:

(1) dS
k = 0. Since no tile dependence is enforced in this case, no limitation

for j′k is defined. So it is true that 0 ≤ j′k ≤ vkk − 1.
(2) dS

k = 1. In this case, there must exist a data dependence in the TTIS
d′ ∈ D′ such, that the k-th component of j′ + d′ exceeds the respective
bound of the TTIS, thus incurring need for communication according to
the k-th dimension.

29

According to the above, it must be true that

j′k + d′
k > vkk − 1 ⇒ j′k + d′

k ≥ vkk ⇒ j′k ≥ vkk − d′
k

for some d′ ∈ D′ or equivalently

j′k ≥ vkk − max
d′∈D′{d′

k}

The unification of both cases leads to the given condition.

APPENDIX B – Summary of Notations

Z: set of integers
n: loop depth
Jn: original loop iteration space
D: dependence matrix
dk: a random dependence vector (a column of matrix D)
q: number of dependencies
fw: write array reference
lk: lower bound of dimension k in Jn

uk: upper bound of dimension k in Jn

DS: Data Space
H: tiling transformation matrix
P: inverse tiling transformation matrix (H = P−1)
TIS: Tile Iteration Space
JS: Tile Space
DS: Tile Dependence Matrix
TTIS: Transformed Tile Iteration Space
lSk: lower bound of dimension k in JS

uS
k: upper bound of dimension k in JS

H′: transformation matrix between TIS and TTIS
P′: transformation matrix between TTIS and TIS (P ′ = H ′−1)
V: a diagonal matrix, H ′ = V H
l′k: lower bound of dimension k in TTIS
u′

k: upper bound of dimension k in TTIS
H̃′: Hermite Normal Form of H ′

ck: steps in the TTIS (= h̃′
kk)

akl: incremental offsets in the TTIS (= h̃′
kl)

m: mapping dimension
�pid: n − 1-dimensional vector identifying a processor

jSm: a coordinate in the mapping dimension of the Tile Space
tS: a coordinate in the mapping dimension of the Tile Space (equivalent to
jS
m − lSm)

30

LDS: Local Data Space
map: a translation function from LDS to TTIS
map−1: a translation function from TTIS to LDS
loc: a translation function from LDS to Jn

loc−1: a translation function from Jn to LDS
D′: dependence matrix in TTIS (D′ = H ′D)
Dm: derives from DS when the m-th line excluded
dm: a column vector of Dm

dS(dm): all tile dependencies dS that generate processor dependence dm

dm(dS): the processor dependence dm that corresponds to a tile dependence
dS

�CC: communication vector

31

