
Data Parallel Code Generation for Arbitrarily Tiled Loop Nests

Georgios Goumas, Nikolaos Drosinos, Maria Athanasaki and Nectarios Koziris
National Technical University of Athens

Dept. of Electrical and Computer Engineering
Computing Systems Laboratory

e-mail: �goumas, ndros, maria, nkoziris�@cslab.ece.ntua.gr

Abstract

Tiling or supernode transformation is extensively discussed
as a loop transformation to efficiently execute nested loops
onto distributed memory machines. In addition, a lot
of work has been done concerning the selection of a
communication-minimal and a scheduling-optimal tiling
transformation. However, no complete approach has been
presented in terms of implementation for non-rectangularly
tiled iteration spaces. Code generation in this case can be
extremely complex, while parallelization issues such as data
distribution and communication are far from being straight-
forward. In this paper, we propose a complete method to
efficiently generate data parallel code for arbitrarily tiled
iteration spaces. We assign chains of neighboring tiles to
the same processor. Experimental results show that non-
rectangular tiling allows better scheduling schemes, thus
achieving less overall execution time.

Keywords: Loop tiling, supernodes, non-unimodular trans-
formations, data parallel, code generation.

1 Introduction

Tiling or supernode transformation is a well known loop
transformation used to enforce coarse grain parallelism in
distributed memory machines. Tiling groups neighboring
iterations to form a unique computational unit which is un-
interruptedly executed. Communication occurs in larger
messages before and after the computation of a tile, reduc-
ing both the number of total messages and the amount of
data exchanged. A lot of work has been done concerning
the selection of a communication-minimal tiling. Ramanu-
jam and Sadayappan in [9] first accented the use of non-
rectangular tiles in order to minimize inter-processor com-
munication. Boulet et al. in [3] used a per tile communi-
cation function that has to be minimized by linear program-
ming approaches. Based on this function, Xue in [11] pre-
sented a complete method to determine the tiling transfor-

mation � that imposes minimum communication. On the
other hand, different tile shapes can also lead to different
scheduling schemes for an algorithm. Hodzic and Shang in
[7] presented a method to determine the tile shape that leads
to minimum overall execution time. Most significantly,
communication-minimal and time-optimal tile shapes are
both derived from the tiling cone of the algorithm and thus
can be simultaneously achieved. Specifically, in [7] it is
shown that, for a given tile size, a time-optimal tile shape
can be determined by properly scaling � vectors from the
surface of the algorithm’s tiling cone.

Despite all this extensive research on tiling iteration
spaces for minimum communication and optimal overall
execution time, no complete approach has been presented
addressing implementation issues such as transformed loop
bounds calculation, iteration distribution, data distribution
and message passing code generation for arbitrarily tiled
loop nests. In other words, there are no actual experimental
results to verify the above theory. In this paper we present
a complete approach to generate data-parallel code for arbi-
trarily tiled iteration spaces to be executed onto distributed
memory machines. We continue previous work concerning
the efficient generation of sequential tiled code [5], based on
the transformation of a non-rectangular tile to a rectangu-
lar one. We take advantage of the regularity of transformed
rectangular tiles in order to effectively distribute data among
processors and generate the communication primitives. In
this way, the parallelization process of the sequential tiled
code is greatly simplified. Our experimental results con-
firm that the selection of a non-rectangular tiling transfor-
mation can lead to a much more efficient scheduling of tiles
to processors. The rest of the paper is organized as follows:
Section 2 presents some preliminary concepts, along with
some notation and intuition from the techniques presented
in [5]. Section 3 addresses all parallelization problems such
as computation distribution, data distribution and automatic
message passing code generation. Section 4 presents our
experimental results while Section 5 summarizes our results
and proposes future work.

2 Preliminary Concepts

2.1 Program Model-Notation

In this paper we consider algorithms with perfectly
nested FOR-loops with uniform and constant dependencies
(as in [3]). That is, our algorithms are of the form:

FOR �� � �� TO �� DO

FOR �� � �� TO �� DO

...

FOR �� � �� TO �� DO

�������� �� � ������� � ����� � � � � ������ � ������

ENDFOR

...

ENDFOR

ENDFOR

We are dealing with general parameterized convex
spaces, with the only assumption that the iteration space is
defined as the bisection of a finite number of semi-spaces of
the n-dimensional space �� (as in [1]). Finally, we assume
that there are no anti or output dependencies.

Throughout this paper the following notation is used: �
is the set of integers, � is the number of nested FOR-loops
of the algorithm and � is the number of dependence vectors.
We denote a vector as � or �� according to the context. The
�-th element of the vector is denoted ��. The dependence
matrix of an algorithm is the set of all dependence vectors:
� � ���	 ��	

 	 ���. �� � �� is the set of indexes, or the
Iteration Space of an algorithm: � � � �����	

	 ������ �
� �
� � �� � ��	 � � � � ��. Each point in this �-
dimensional integer space is a distinct instance of the loop
body. The Data Space, denoted ��, is defined as: �� �
�������� � ���, where �� is the write array reference.

2.2 Tiling Transformation

In a tiling transformation, the index space � � is par-
titioned into identical �-dimensional parallelepiped areas
(tiles or supernodes) formed by � independent families of
parallel hyperplanes. Tiling transformation is defined by
the �-dimensional square matrix � . Each row vector of �
is perpendicular to one family of hyperplanes forming the
tiles. Dually, it can be defined by � linearly independent
vectors, which are the sides of the tiles. Matrix � con-
tains the side-vectors of a tile as column vectors. It holds
� � ���. Given a tiling transformation� and an iteration
space ��, we define the following spaces:

1. The Tile Iteration Space ������ � �� � ������� �
��, which contains all points that belong to the tile
starting at the axes origins.

2. The Tile Space �����	 �� � ������ � ����	 � �
���, which contains the images of all points � � � �

according to the tiling transformation.

3. The Tile Dependence Matrix �� � ��� ��� � �����
���	 � � �	 � � ����, which contains the dependen-
cies between tiles.

2.3 Sequential Tiled Code

In [5] we have presented a complete method to efficiently
generate sequential tiled code, that is, code that reorders the
initial execution of the algorithm according to a tiling trans-
formation � . The tiled iteration space is now traversed by
a �� dimensional loop, where the � outermost loops enu-
merate the tiles and the � innermost ones sweep the points
within tiles. We presented an efficient method to calculate
the lower and upper bounds for the � outermost loops, that
is
�� and ��� for the loop control variable ��� . In order to cal-
culate the corresponding bounds for the � innermost loops,
we transformed the original non-rectangular tile to a rect-
angular one, using a non-unimodular transformation � � di-
rectly derived from � . Specifically, it holds � � � � � ,
where � is a �	 � diagonal matrix such that ����� � ��,
and �� is the �-th row of � . The inverse of matrix � � is de-
noted � �. We shall continue using this transformation in the
parallelization process presented in this paper and thus we
need to introduce some basic concepts and notations found
in greater detail in [5].

P’

H’

1

2

Transformed Tile Iteration Space (TTIS) Tile Iteration Space (TIS)

2

1

j

j

j’

j’0 5 10

5

10

15

20

0 5 10

5

10

Figure 1. Traverse the ��� with a non-
unimodular transformation

Figure 1 shows the transformation of the ��� into a rect-
angular space called the Transformed Tile Iteration Space
���� using matrices � � and � �. If �� � �� and � � �
����, the corresponding � � � � is calculated from the ex-
pression � � ��� � � ���. Code generation for the loop
that will traverse the ���� is straightforward, since the
lower and upper bounds of control variable � �� (
�� and ���
respectively) can be easily determined as follows:
 �� � �
and ��� � ���
 � (for boundary tiles these bounds can be

corrected using inequalities describing the original iteration
space). Note, that each loop control variable may have a
non-unitary stride and a non-zero incremental offset. We
shall denote the incremental stride of control variable � �� as
��. In addition, control variable � �� may have �
 � incre-
mental offsets, one for the increment of each of the �
 �
outermost control variables, denoted ��� (
 � �

 �
�). In
[5] it is proven that strides and initial offsets in our case can
be directly obtained from the Hermite Normal Form (HNF)
of matrix � �, denoted �� �. Specifically, it holds: �� � �����
and ��� � ����� (Fig. 2).

2j

j1

~

222

~

111

21 21

~

c =h’ =5

c =h’ =1

a = h’ = 2

Figure 2. Steps and incremental offsets in
���� derived from matrix �� �

3 Data Parallel Code Generation

The parallelization of the sequential tiled code involves
issues such as computation distribution, data distribution
and communication between processors. Tang and Xue in
[10] addressed the same issues for rectangularly tiled iter-
ation spaces. We shall generate efficient data parallel code
for non-rectangular tiles without imposing any further com-
plexity. The underlying architecture is considered a (�
�)-
dimensional processor mesh. Thus, each processor is iden-
tified by a (�
 �)-dimensional vector denoted ����. The
memory is physically distributed among processors. Pro-
cessors perform computations on local data and communi-
cate with each other with messages in order to exchange
data that reside to remote memories. In other words, we
consider a message-passing environment over a NUMA ar-
chitecture. Note, however, that the (�
 �)-dimensional un-
derlying architecture is not a physical restriction, but a con-
vention for processor naming. The general intuition in our
approach is that since the iteration space is transformed by
� and � � into a space of rectangular tiles, each processor
can work on its local share of ”rectangular” tiles and per-
form operations on rectangular data spaces according to a
proper memory allocation scheme. After all computations
in a processor have been completed, locally computed data
can be written back to the appropriate locations of the global
data space. In this way, each processor essentially works on

iteration and data spaces that are both rectangular, and prop-
erly translates from its local data space to the global one.

3.1 Computation and Data Distribution

Computation distribution determines which computa-
tions of the sequential tiled code will be assigned to which
processor. The � innermost loops of the sequential tiled
code that access the internal points of a tile will not be par-
allelized, and thus parallelization involves the distribution
of tiles to processors. Hodzic and Shang in [6] mapped
all tiles along a specific dimension to the same processor
and used hyperplane � � ��	

 	 �	 as time schedule vec-
tor. In addition to this, previous work [2] in the field of
UET-UCT task graphs has shown that if we map all tiles
along the dimension with the maximum length (i.e. maxi-
mum number of tiles) to the same processor, then the over-
all scheduling is optimal, as long as the computation to
communication ratio is one. We follow this approach in
order to map tiles to processors, trying to adjust tile size
properly. Let us denote the �-th dimension as the one
with the maximum total length. According to this, all tiles
indexed by ������ 	

 	 �

�
�	

 	 ��� �, where ��� � �����,

� � �	

 	�
 �	� � �	

 	 � and
�� � ��� � ��� are
executed by the same processor. The �
 � coordinates of
a tile (excluding ���) identify the processor that a tile is go-
ing to be mapped to (�����. All tiles along ��� (denoted also
as ��) are sequentially executed by the same processor, one
after the other, in an order specified by a linear time sched-
ule. This means that, after the selection of index � �� with
the maximum trip count, we reorder all indexes so that � ��
becomes the innermost one. This corresponds to loop index
interchange or permutation. Since all dependence vectors
�� � �� are considered lexicographically positive, the in-
terchanging or reordering of indexes is valid (see also [8]).

In a NUMA architecture, the data space of the original
algorithm is distributed to the local memories of the var-
ious nodes forming the global data space. Data distribu-
tion decisions affect the communication volume, since data
that reside in one node may be needed for the computa-
tion in another. In our approach, we follow the ”computer-
owns” rule, which dictates that a processor owns the data
it writes, and communication occurs when one processor
needs to read data computed by another. Consequently, the
original location of an array element is where it is com-
puted. Substantially, the memory space allocated by a pro-
cessor represents the space where computed data are to be
stored. This means that each processor iterates over a num-
ber of transformed rectangular tiles (����s), and locally
stores its computed data to a rectangular data space. At
the end of all its computations, the processor places its
locally computed data to the appropriate positions of the
global Data Space (��). The data space computed by a

m
ap

pi
ng

 d
im

en
si

on

t=0

t=1

t=2

t=3

j'1

j''2

j''1

j'2

map-1

map

LDS TTIS
..
.

off1

off2

Computation Storage

Communication Storage

Unused Space

Figure 3. Local Data Space ��� and Trans-
formed Tile Iteration Space ����

tile could be an exact image of the ����, but in that case
the holes of the ���� would correspond to unused extra
space. In addition to the space storing the computed data,
each processor needs to allocate extra space for communi-
cation, that is memory space to store the data it receives
from its neighbors. This means that we need to condense
the actual points of the ���� and provide further space for
received data. Since, after all transformations, we finally
work with rectangular sets, this Local Data Space denoted
��� allocated by a processor can be formally defined as
follows: ��� � �� �� � ���� � ���� � ���� � ��� ��	 � �
�	

 	 �	 � �� � � � � ���� � ���� � ������ ���, where
��� denotes the number of tiles assigned to the particular pro-
cessor. As shown in Figure 3, ��� consists of the mem-
ory space required for storing computed data (black dots)
and for unpacking received data (grey dots) of a tile, multi-
plied by the number of tiles assigned to the processor. White
squares depict unused data. The offset ���� which expands
the space to store received data, is derived from the com-
munication criteria of the algorithm as shown in the next
subsection.

Recall that each processor iterates over the ���� for as
many times as the number of tiles assigned to the proces-
sor. If � is the current tile and � � � ���� the current in-
stance of the inner �-dimensional loop, function ����� �	 ��
determines the memory location in ��� where the com-
putation for this iteration is to be stored (Figure 3). Appar-
ently, ���������� is its inverse. Function
����� in Table 1
uses ������	 �� in order to locate the processor ���� and the
memory location � �� � ���, where the computed data of
iteration point � � �� is to be stored. Inversely, Table 2
shows the series of steps required to locate the correspond-

)(ypidLDS

Jn

)(xpidLDS

loc()

loc–1()

fw()

DS

loc()
loc–1()

j2

j1

w1

w2

j2''

j2''

j1''

j1''

Figure 4. Relations between ��, �� and ���

ing � � �� for a point � �� � ��� of processor ����. Thus,

������ is called by processors at the end of their compu-
tations, in order to transit from their ���s to the original
iteration space ��. In the sequel, the corresponding point in
the Data Space �� is found via �� (Figure 4).

Table 1. Using function
���� to locate � � ��,
in the ��� of a processor

��� � ������	 ��

���� � ��� �� � ����	 � �� �
���� � ����� � ���� �� � ����

���	 ���� �
�����

�� � ����
�� � � ���
 ����

��� � ������	 ���

���
���� � ���� 	

 	 �

�
���	 �

�
���	

 	 �

�
� �

3.2 Communication

Using the iteration and data distribution schemes de-
scribed before, data that reside in the local memory mod-
ule of one processor may be needed by another due to al-
gorithmic dependencies. In this case, processors need to
communicate via message passing. The two fundamental
issues that need to be addressed regarding communication
are the specification of the processors each processor needs
to communicate with, and the determination of the data that
need to be transferred in each message.

As far as the communication data is concerned, we fo-
cus on the communication points, e.g. the iterations that
compute data read by another processor. We further ex-
ploit the regularity of the ���� to deduce simple crite-
ria for the communication points at compile time. More

Table 2. Using function
������ to locate ��� �

��� of processor ���� in ��

�� � ����������

� � �����
 ������� ���

��� � ����
��

�
 ����� � �
����
���

���������
��	 � �� �

��� � ����
��

�
 �����
 ���� � �
����
���

������
�

��
��

� �
��������	 �����

�� � ����������
�� � �����	

 	 ������	 ��
��	 ������	

 	 �����

� � ��� � � ���

specifically, a point � � � ���� corresponds to a commu-
nication point according to the �-th dimension if the �-th
coordinate of � � � ��� is greater than the respective ����-
bound at the �-th dimension for some transformed depen-
dence vector ��� � �� (�� � � ��). In other words, � �

is a communication point respective to the �-th dimension
when it holds � �� � ��!������ " ���
 � or equivalently
��� � ���
��!������. We define the communication vec-
tor �## � ����	

 	 ���� where ��� � ���
 ��!������.
It is obvious that �## can easily be determined at compile
time. Note that the offsets in ��� referenced in
3.1 can
easily arise as follows: ���� � ���!������ ���	 � �� �
and ���� � ��� ��.

Communication takes place before and after the execu-
tion of a tile. Before the execution of a tile, a processor
must receive all the essential non-local data computed
elsewhere, and unpack this data to the appropriate loca-
tions in its ���. Dually, after the completion of a tile,
the processor must send part of the computed data to
the neighboring processors for later use. We adopt the
communication scheme presented by Tang and Xue in
[10], which suggests a simple implementation for packing
and sending the data, and a more complicated one for
the receiving and unpacking procedure. The asymmetry
between the two phases (send-receive) arises from the fact
that a tile may need to receive data from more than one
tiles of the same predecessor processor, but it will send its
data only once to each successor processor, satisfying all
the tile dependencies that lead to different tiles assigned to
the same successor in a single message. In other words, a
tile will receive from tiles, while it will send to processors.
Let �� be the projection of �� in the �
 � dimensions,
when the mapping dimension � is collapsed. �� ex-
presses processor dependencies, meaning that, in general,
processor ���� needs to receive from processors ����
 ��

and send to processors ���� � �� for all �� � ��. The

following schemes for receive-unpack and pack-send have
been adopted according to the MPI platform. ������
denotes the processor dependence �� that corresponds
to a tile dependence �� , while ������ denotes all tile
dependencies �� that generate processor dependence ��.
Function minsucc���	 ��� denotes the lexicographically
minimum successor tile of tile �� in processor direction
��, while function valid(��) returns true if tile �� is
enumerated. The two functions are described in detail
in [10]. �$ denotes an array in local memory which
implements the ���. In the RECEIVE routine, we denote
as
��, �

�

� the bounds of the tile �� ����	 ���
 ���, from which
the current tile � ����	 ��� is dependent.

RECEIVE(
��� �� �
�� 	��)
FOR �� �
� DO /*For all tile dependencies...*/

/*...if predecessor tile valid and current tile
lexicographically minimum successor...*/
IF(valid�� 	
��� ���� ��� �

� 	
��� ���=minsucc�� 	
��� ���� ��,�������)
/*...receive data from predecessor processor...*/
MPI Recv(buffer,Rank(
��� ������),...);
/*...and unpack it to ��� of current processor.*/
count:=0;
FOR ��

�
� ������

�
� ��

�
���� TO ��

�
STEP=�� DO

...
FOR ��� � ��� TO ��� STEP=�� DO
...
FOR ��� � �������� �

�
����� TO ��� STEP=�� DO

LA[map(��,�� � ���)-�
��
�
���
��

� � � � �
��
�
���
��

�]:=

buffer[count++];
ENDFOR
...

ENDFOR
...

ENDFOR
ENDIF

SEND(
��� �� �
�� 	��)
FOR �� �
� DO /*For all processor dependencies...*/

/*...if a valid successor tile exists...*/
IF(������� �
�:valid�� 	
��� ��� � �������)

/*...pack communication data to buffer...*/
count:=0;
FOR ��

�
� ������

�
� ��

�
���� TO ��

�
STEP=�� DO

...
FOR ��� � ��� TO ��� STEP=�� DO
...
FOR ��� � �������� �

�
���

���� TO ��� STEP=�� DO
buffer[count++]:=LA[map(��,�� � ���)];

ENDFOR
...

ENDFOR
...

ENDFOR
/*...and send to successor processor.*/
MPI Send(buffer,Rank(
��� ��),...);

ENDIF

Summarizing, the generated data parallel code for
the loop of Section 2 would have a form similar to the
following:

FORACROSS
��� � ��
�

TO ��
�

DO

...

FORACROSS
����� � �����
TO �����

DO

/*Sequential execution of tiles*/
FOR �� � ��� TO ��� DO

/*Receive data from neighboring tiles*/
RECEIVE(
��� �� �
� � 	��);

/*Traverse the internal of the tile*/
FOR ��

�
� ��

�
TO ��

�
STEP=�� DO

...

FOR ��� � ��� TO ��� STEP=�� DO

/*Perform computations on Local Data Space ���*/
� �� �� � ��� �

�����
���� ��� �� � ������
��� � ��
�
� ���� � � � �

�����
��� � ���� �����

ENDFOR

...

ENDFOR

/*Send data to neighboring processors*/
SEND(
��� �� �
�� 	��);

ENDFOR

ENDFORACROSS

...

ENDFORACROSS

4 Experimental Results

We have implemented our parallelizing techniques in a
tool that automatically generates data parallel code using
MPI and run our examples on a cluster with 16 identical
500MHz Pentium nodes with 128MB of RAM. The nodes
are interconnected with FastEthernet. The scope of our ex-
periments is to accentuate the selection of non-rectangular
tiling transformations. As candidate problems we used
SOR as presented in [11] and the Jacobi algorithm as pre-
sented in [7]. Both algorithms need to be skewed in or-
der to be rectangularly tiled. Thus, we applied rectangu-
lar tiling transformation to the skewed spaces, defined by

�� �

�
�

�

	
� �

� �

�

� � �

�

�
�, where !	 %	 & � ��. In addition, in

the SOR algorithm we applied non-rectangular transforma-

tion defined by ��� �

�
�

�

	
� �

� �

�

 �

�
� �

�

�
� and mapped tiles

along the third dimension to the same processor, while in
the Jacobi algorithm we applied non-rectangular tiling de-

fined by ��� �

�
�

�

	

 �

�	
�

� �

�

� � �

�

�
� and mapped tiles along

the first dimension to the same processor. In both algo-
rithms, the communication volume, the number of required
processes and the tile size are the same for both rectangu-
lar and non-rectangular transformations. Figure 5 depicts
the maximum speedups in the SOR algorithm, obtained by
applying different tile sizes to four iteration spaces for rect-
angular and non-rectangular tiling (variables M, N represent
iteration space bounds), while Figure 6 shows the speedups
obtained when varying the tile size for a particular iteration
space. Figures 7 and 8 depict the respective speedups for
the Jacobi algorithm.

0

2

4

6

8

10

12

M=100
N=100

M=200
N=100

M=150
N=150

M=100
N=200

Iteration Space

S
pe

ed
up

Rectangular Tiling Non-rectangular Tiling

Figure 5. SOR: maximum speedups for differ-
ent iteration spaces

5

7

9

11

900 990 1800 2160 2640 3150

Tile Size

S
pe

ed
up

Rectangular Tiling Non-rectangular Tiling

Figure 6. SOR: speedups for various tile sizes
('=100, (=200)

In all cases non-rectangular tiling transformations lead
to greater speedups than rectangular ones. Specifically, in
SOR we have an average speedup improvement of 17.3%,
while in Jacobi an improvement of 9.1%. This confirms
the work presented in [7]. Note that all comparison factors
between rectangular and non-rectangular tiling are common
(tile size, communication volume and number of processors
required). Thus, we can safely assert that the reduction in
total execution times observed for non-rectangular tiles is
due to the more efficient scheduling schemes enabled in this
case.

0

2

4

6

8

10

12

T=50
I=J=100

T=100
I=J=100

T=50
I=J=200

T=100
I=J=200

Iteration Space

S
pe

ed
up

Rectangular Tiling Non-rectangular Tiling

Figure 7. Jacobi: maximum speedups for dif-
ferent iteration spaces

4

6

8

10

288 512 648 800 1280 1620

Tile Size

S
pe

ed
up

Rectangular Tiling Non-rectangular Tiling

Figure 8. Jacobi: speedups for various tile
sizes (�=50, �=�=100)

5 Conclusions-Future Work

In this paper we presented a complete framework to gen-
erate data parallel code for arbitrarily tiled iteration spaces.
Our work is based on transforming the non-rectangular tile
into a rectangular one using a non-unimodular transforma-
tion. In this way, we were able to efficiently determine the
transformed loop bounds and strides and easily address par-
allelization issues such as data distribution and automatic
message-passing. Our experimental results show that fol-
lowing our approach to execute non-rectangular tiles in-
stead of rectangular ones, we can have a significant increase
in speedups, due to more efficient scheduling schemes. Fu-
ture work includes the combination of our method with ad-
vanced scheduling schemes presented in [4].

References

[1] C. Ancourt and F. Irigoin, ”Scanning Polyhedra with
DO Loops,” In Proc. of the Third ACM SIGPLAN Sym-
posium on Principles & Practice of Parallel Program-
ming (PPoPP), pp. 39–50, April 1991.

[2] T. Andronikos, N. Koziris, G. Papakonstantinou and
P. Tsanakas, ”Optimal Scheduling for UET/UET-UCT
Generalized N-Dimensional Task Graphs,” Journal of
Parallel and Distributed Computing, vol. 57, no. 2, pp.
140-165, May 1999.

[3] P. Boulet, A. Darte, T. Risset and Y. Robert, ”(Pen)-
ultimate tiling?,” INTEGRATION, The VLSI Jounal,
volume 17, pp. 33–51, 1994.

[4] G. Goumas, A. Sotiropoulos and N. Koziris, ”Mini-
mizing Completion Time for Loop Tiling with Com-
putation and Communication Overlapping,” In Proc.
of the Int’l Parallel and Distributed Processing Sym-
posium 2001 (IPDPS-2001), San Francisco, Califor-
nia, April 2001.

[5] G. Goumas, M. Athanasaki and N. Koziris, ”Auto-
matic Code Generation for Executing Tiled Nested
Loops Onto Parallel Architectures”, In Proc. of the
ACM Symposium on Applied Computing (SAC 2002),
Madrid, March 2002.

[6] E. Hodzic and W. Shang, ”On Supernode Transfor-
mation with Minimized Total Running Time,” IEEE
Trans. on Parallel and Distributed Systems, vol. 9, no.
5, pp. 417–428, May 1998.

[7] E. Hodzic and W. Shang, ”On Time Optimal Su-
pernode Shape,” In Proc. of the International Con-
ference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA), Las Vegas, CA,
June 1999.

[8] D. Padua and W. Wolfe, ”Advanced Compiler Op-
timizations for Supercomputers,” Communications of
the ACM, vol. 29, no. 12, 1986.

[9] J. Ramanujam, P. Sadayappan, ”Tiling Multidimen-
sional Iteration Spaces for Multicomputers,” Jour-
nal of Parallel and Distributed Computing, vol. 16,
pp.108–120, 1992.

[10] P. Tang and J. Xue, ”Generating Efficient Tiled Code
for Distributed Memory Machines,” Parallel Comput-
ing, 26(11) pp. 1369–1410, 2000.

[11] J. Xue, ”Communication-Minimal Tiling of Uniform
Dependence Loops,” Journal of Parallel and Dis-
tributed Computing, vol. 42, no.1, pp. 42–59, 1997.
Journal of Parallel and Distributed Computing, vol.
16, pp.108–120, 1992.

