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Abstract

This paper presents a new approach for the execution of
coarse-grain (tiled) parallel SPMD code for applications
derived from the explicit discretization of 2-dimensional
PDE problems with finite-differencing schemes. Tiling
transformation is an efficient loop transformation to achieve
coarse-grain parallelism in such algorithms, while rectan-
gular tile shapes are the only feasible shapes that can be
manually applied by program developers. However, rect-
angular tiling transformations are not always valid due to
data dependencies, and thus requiring the application of
an appropriate skewing transformation prior to tiling in or-
der to enable rectangular tile shapes. We employ cyclic
mapping of tiles to processes and propose a method to de-
termine an efficient rectangular tiling transformation for a
fixed number of processes for 2-dimensional, skewed PDE
problems. Our experimental results confirm the merit of
coarse-grain execution in this family of applications and
indicate that the proposed method leads to the selection of
highly efficient tiling transformations.

1 Introduction

A large variety of physical phenomena is described by
partial differential equations (PDEs). A common strat-
egy to numerically solve PDEs is to discretize the deriva-
tives involved in the equation by finite-differences. At
present, finite-difference methods provide a powerful ap-
proach to solve differential equations and are widely used
in many field of applied sciences. Finite-differencing a par-
tial derivative of function u(i, j) involves the construction
of a proper stencil employing discrete values of u at points

This research is supported by the Pythagoras II Project (EPEAEK II), co-
funded by the European Social Fund (75%) and National Resources (25%).

1-4244-0910-1/07/$20.00 c©2007 IEEE.

i±κ∆x and j±λ∆y of a computational grid which in turn
leads to the construction of an n-dimensional nested loop
with n linearly independent data dependencies. This fact
prohibits DOALL parallelism, which would enable efficient
execution of the nested loop onto parallel architectures.
Consequently, the parallel execution of discretized PDEs
requires frequent communication that greatly degrades per-
formance in parallel platforms. In order to alleviate this
overhead, researchers have proposed the application of the
tiling transformation [7] to algorithms with n linearly in-
dependent data dependencies. Tiling groups neighboring
iterations into a single group (tile or supernode) which is
formed by an n-dimensional parallelogram. The algorithm
is then scheduled so that communication is interleaved with
the parallel execution of tiles instead of single iterations,
achieving in this way coarse-grain parallelism.

The problem of the application of general tiling trans-
formations has been attacked in [1] and [2], where it is
shown that the general case can be handled only by an au-
tomatic parallelizing compiler. However, the problem of
efficiently mapping non-rectangular tiles to a fixed number
of processes is still open. On the other hand, rectangular
tiling transformation is valid only when the nested loop is
fully permutable [9], i.e., when there is no negative ele-
ment in the dependence vectors. Unfortunately, this is not
the general case for discretized PDEs, where the employ-
ment of u(i + κ∆x) terms in the construction of the sten-
cil incurs negative coefficients in some data dependencies.
Traditional loop theory recommends the application of the
skewing transformation prior to applying tiling in order to
transform the loop nest into a fully permutable one. This
fact, however, generates a number of new problems since
the shape of the original iteration space changes after skew-
ing, making code development quite error-prone and, more
importantly, greatly complicating the process of mapping
and scheduling the tasks to a fixed number of processes.
The above problems make parallel developers refrain from
applying the tiling transformation to PDE codes.



However, since tiling is a significant transformation to
attain performance for DOACROSS loop nests executed in
NUMA parallel architectures, we aim at providing the par-
allel programmer with a detailed method to develop coarse-
grain (tiled) parallel code. In order to avoid great complex-
ities imposed by the general case, we restrict our attention
to 2-dimensional PDE problems. Note that, in principle,
PDEs have a dimension of 4 at maximum, modelling phys-
ical problems with one, two or three spatial and one tem-
poral dimension. With the approach presented in this pa-
per, the developer will be able to cope with problems with
the temporal and one spatial coordinate. However, in many
cases it is possible to split a 4-dimensional problem into
three 2-dimensional ones, as in atmospheric modelling [4].
Moreover, as stated in [5], several physical problems in one
spatial dimension correspond to physical systems in three
dimensions which have cylindrical or spherical symmetry.

This paper presents a detailed guideline to the program-
mer for the development of efficient SPMD MPI code for
the execution of 2-dimensional PDE codes onto a parallel
platform where remote access times are significantly larger
than local access times. For this reason we summon pre-
vious knowledge from traditional loop transformation and
scheduling theory and clarify the application of skewing
and tiling transformations. In addition, since the parallel
execution time of a tiled algorithm is extremely sensitive
to the selection of the tiling parameters (size and shape),
the execution times may result to be quite disappointing if
these parameters are not properly fine-tuned. Overall, in
this paper we provide detailed steps of coarse-grain SPMD
code development, employ a cyclic mapping scheme and
present an efficient method to select proper tiling transfor-
mations in the skewed and tiled space that maximize pro-
cess concurrency. The rest of the paper is organized as
follows: The next section presents the algorithmic model
along with some background knowledge. Section 3 illus-
trates the straightforward, fine-grain execution of PDE ap-
plications while Section 4 proposes explicit guidelines for
the development of coarse-grain SPMD code broken down
into steps, together with our method to determine efficient
tiling transformations. In Section 5 we investigate the effi-
ciency of coarse-grain execution and compare our proposed
tiling transformation to alternative ones. Finally, in Sec-
tion 6 we close this paper with our concluding remarks.

2 Preliminaries

2.1 Algorithmic Model

In this paper we study nested loops resulting from the
discretization of 2-dimensional PDEs. We consider rectan-
gular computational domains, thus the iteration space J of
the nested loops is defined as: J = {�j = (j1, j2) : l1 ≤

j1 ≤ u1 ∧ l2 ≤ j2 ≤ u2}. Finite-differencing discretization
schemes lead to loop-carried data dependencies. In addi-
tion, if we consider explicit discretization schemes, the data
dependencies are lexicographically positive [6]. The 2×m
matrix D contains the data dependencies. The algorithms
are of the form shown in Algorithm 1.

Algorithm 1: algorithmic model

for (j1 = l1; j1 < u1; j1++) do1

for (j2 = l2; j2 < u2; j2++) do2

U [�j] = F (U [�j − �d(1)], . . . , U [�j − �d(m)]);3

Example 1: Thermal diffusion in a bar of length X′ for a time
window T ′ is described by the equation ∂u

∂t
− θ ∂2u

∂x2 = F (t, x).
With finite-differences, the partial derivatives are approximated by
∂u
∂t

=
ut+1,x−ut,x

∆t
and ∂2u

∂x2 =
ut,x+1−2ut,x+ut,x−1

∆x2 . Thus,

we obtain ut+1,x = ut,x + θ
∆t

∆x2
(ut,x+1 − 2ut,x + ut,x−1) +

∆tF (t, x), which is implemented by the 2-dimensional nested
loop of Algorithm 2 (T = T ′

∆t
, X = X′

∆x
, r = ∆t

∆x2 ). The de-

pendence matrix of the algorithm is: D =

�
1 1 1
0 1 −1

�
.

Algorithm 2: nested loop for thermal diffusion

for (t = 0; t < T ; t++) do1

for (x = 1; x < X; x++) do2

U [t + 1][x] = (1 − 2θr)U [t][x] + θr(U [t][x −3

1] + U [t][x + 1]) + ∆tF (t, x);

2.2 Tiling and Skewing Transformations

In a tiling transformation the original iteration space of
an algorithm is partitioned into identical n-dimensional par-
allelepiped areas (tiles or supernodes). Tiles are then as-
signed to processes and executed uninterruptedly according
to a linear schedule [7], while communication occurs be-
fore and after the computations within a single tile. Tiling
transformation is uniquely defined by the n-dimensional
square matrix H . Each row vector of H is perpendicu-
lar to one family of hyperplanes forming the tiles. Du-
ally, tiling transformation can be defined by n linearly in-
dependent vectors, which represent the sides of the tiles.
Similar to matrix H , matrix H−1 contains the side vec-
tors of a tile as column vectors. Note that a rectangular
tiling transformation is defined by a diagonal matrix H . In
the 2-dimensional problems under consideration we denote
H−1 = diag(ct, cx). Thus, if �j = (j1, j2) ∈ J then �jS

corresponds to the coordinates of the tile �j belongs to, and
it will hold: �jS = (jS

1 , jS
2 ) = (� j1

ct
�, � j2

cx
�).

A tile dependence arises when a point in the interior
of one tile is dependent on a point in the interior of an-
other. The tile dependence matrix DS is determined by:
DS = { �dS : �dS = �H(�j0 + �d)�, �d ∈ D, �j0 ∈ J ∧ 0 ≤



�H �j0� ≤ 1}, where �j0 denotes the index points lying in-
side the first complete tile at origin of the original iteration
space. For a dependence matrix D and a tiling transforma-
tion H , it must hold HD ≥ 0 for the tiling to be legal. This
condition ensures that tiles are atomic and that the initial
execution order is preserved [7]. In the opposite case, any
execution order of tiles would result in a deadlock, since the
tile dependence matrix DS would contain lexicographically
negative vectors, consequently preventing the application of
a valid linear schedule to the tiled space [8].

t

x

t

x

Figure 1. Application of rectangular tiling
transformation to thermal diffusion.

Example 2: Figure 1 displays the application of a rectangular

tiling transformation defined by H−1 =

�
3 0
0 3

�
to the thermal

diffusion algorithm of Example 1. Thin arrows depict the depen-
dencies of the original algorithm, while bold arrows depict the de-
pendencies between tiles, i.e. the column vectors of matrix DS .

It holds DS =

�
1 0 1 1 0
0 1 1 −1 −1

�
. Since HD �> 0, DS

contains a lexicographically negative dependence �dS
5 = (0,−1)

that leads to a deadlock. Note in Figure 1, that there exist tiles
which are interdependent.

Loop skewing is a linear and unimodular loop trans-
formation described by a lower triangular matrix [9], that
we denote W . Since in this paper we are dealing with
2-dimensional spaces, the skewing matrix W assumes

the form W =
[

1 0
α 1

]
. We will call α the skew-

ing factor. Thus, an iteration �j of the original iteration
space is mapped to �j′ = W�j. After the application of
skewing transformation—similar to any other linear loop
transformation—the bounds of the transformed iteration
space need to be determined. In the case of skewing the
transformed iteration space J ′ is J ′ = {�j′ = (j′1, j′2) : l1 ≤
j′1 ≤ u1 ∧ l2 + αj′1 ≤ j′2 ≤ u2 + αj′1}. Accordingly, the
dependence matrix of the transformed space is D ′ = WD.

Example 3: If we apply the skewing transformation defined by

W =

�
1 0
1 1

�
to the algorithm of the previous examples, the

dependence matrix becomes D′ =

�
1 1 1
0 1 2

�
. The trans-

formed nested loop is listed in Algorithm 3. Figure 2 visualizes

t'

x'

t'

x'

Figure 2. Successive application of skewing
and tiling transformation.

the result of skewing and subsequent rectangular tiling transfor-
mation to the original iteration space. In this case, it holds that
HD′ ≥ 0 and thus rectangular tiling transformation is valid.

Algorithm 3: nested loop for skewed thermal diffusion

for (t′ = 0; t′ < T ; t′++) do1

for (x′ = 1 + t′; x′ < X + t′; x′++) do2

t = t′; x = x′ − t′;3

U [t + 1][x] = (1 − 2θr)U [t][x] + θr(U [t][x −
1] + U [t][x + 1]) + ∆tF (t, x);

2.3 Linear Loop Schedules

We consider linear loop schedules for the parallel exe-
cution of iterations or tiles onto parallel architectures. A
point �j ∈ J scheduled according to a linear time sched-

ule Π = (π1, π2) will be executed at tj = �Π�j+t0
dispΠ �, where

t0 = −minΠ�j : �j ∈ J and dispΠ = minΠ�d : �d ∈ D [8].
In this paper we will apply wavefront scheduling defined by
Π = (1, 1) to schedule tiled iteration spaces.

3 Fine-grain Parallel PDE Execution

Prior to delving into the details of efficient, coarse-grain
execution of PDEs in parallel architectures, we will ex-
amine the basic alternative: fine-grain parallel execution.
The advantage of this approach is that it can be directly
applied to the original algorithm, without the use of any
loop transformations, leading to a simple code development
process. However, due to the dependencies of discretized
PDEs, there is a need for frequent process communication
in order to exchange boundary data. The pseudo-code of the
fine-grain parallel approach using MPI primitives is sum-
marized in Algorithm 4. The development of this code is
straightforward, but it is obvious that the processes need to



synchronize and exchange data at every time step t due to
the problem’s dependencies.

Algorithm 4: pseudo-code for fine-grain parallel exe-
cution of thermal diffusion

for (t = 0; t < T ; t++) do1

if exists up(pid) then2

MPI Send(buf1, 1, MPI DOUBLE, up, tag,3

MPI COMM WORLD);
MPI Recv(buf3, 1, MPI DOUBLE, up, tag,4

MPI COMM WORLD, &status);
if exists down(pid) then5

MPI Recv(buf4, 1, MPI DOUBLE, down, tag,6

MPI COMM WORLD, &status);
MPI Send(buf2, 1, MPI DOUBLE, down, tag,7

MPI COMM WORLD);
for (x = 1; x < X/P ; x++) do8

Ul[t + 1][x] = (1 − 2θr)Ul[t][x] + θr(Ul[t][x −9

1] + Ul[t][x + 1]) + ∆tF (t, x);

4 The Coarse-grain Approach

In this section we present a detailed approach for coarse-
grain execution of 2-dimensional PDEs onto parallel archi-
tectures. Our problem input is a PDE with an initial domain
T ′ × X ′, the discretization steps ∆t, ∆x, the dependence
matrix D and the number of available processes P . The it-
eration space is T × X with T = T ′

∆t and X = X′
∆x . In

order to achieve efficient parallel execution of the problems
under consideration, three issues need to be addressed: the
selection of an efficient rectangular tiling transformation,
the mapping and scheduling strategy of tiles and the final
SPMD code development. However, as mentioned before,
prior to applying rectangular tiling transformation, we need
to transform the dependence coordinates of our algorithms
into nonnegative ones. Overall, the proposed approach can
be decomposed into the following five discrete steps:

Step 1: Skew the Iteration Space
Our goal is to make all dependence coordinates nonnegative
and prepare the iteration space for the application of rectan-
gular tiling in the next step. Explicit discretization schemes
lead to lexicographically positive dependence vectors that
may contain negative coordinates. In our 2-dimensional
case nonnegative coefficients are encountered in the second
element d2 of dependence vectors �d = (d1, d2). After the
application of a skewing transformation defined by W =[

1 0
α 1

]
we demand that d′

2 ≥ 0 for all the transformed

dependence vectors �d′ ∈ D′ = WD. Hence, we choose a
skewing factor α such that αd1+d2 ≥ 0 ∀ �d ∈ D : d2 < 0.

Step 2: Apply Rectangular Tiling Transformation Since
all dependencies in the skewed space have been made non-

negative, we are now free to apply rectangular tiling trans-

formation defined by H−1 =
[

ct 0
0 cx

]
. Note, however,

that since the selection of ct and cx affects the tile mapping
and scheduling of our transformed application, we need to
postpone this task until the next step.

Step 3: Map Tiles to Processes and Schedule Tasks
In this step we need to efficiently partition the skewed and
tiled iteration space among a fixed number of processes P ,
and select the parameters of the tiling transformation (c t and
cx) from the previous step. Since we are working in a 2-
dimensional domain, we consider a chain of P processes.
According to this approach, each process assumes the ex-
ecution of a sequence of tiles successive along a particular
dimension, as in [3]. We choose to assign tiles along the
second dimension x to the same process in order to sim-
plify code development. Thus, a first approach would be to
distribute the t dimension of our algorithm to P processes
by setting ct = T/P and assign one chain of tiles along the
x dimension to each process (see Figure 3(a) for P = 4).
However, in several cases this approach prohibits maximum
parallelism since, due to the skewed shape of the iteration
space, processes at the end of the process chain may start
their execution close to (or even after) the completion of
tile execution of processes at the head of the process chain.
This reduction in process concurrency is also depicted on
the right of Figure 3(a), where out of 13 parallel execution
times, only one (t = 6) utilizes all four available processes.

An alternative approach that copes with the above prob-
lem, is to divide the t dimension into K slices and map
cyclically each slice to the P processes. Figure 3(b) dis-
plays the alternative mapping for K = 2. Process con-
currency has been significantly improved. In order to
determine efficient tiling parameters under this scheme,
we should approximate the execution and communication
times by a theoretical model and select those parameters
that minimize the model’s total execution time. However,
accurate theoretical models for such parallel executions are
extremely difficult to formulate since computation and com-
munication times are affected by a large number of factors
which may be difficult to determine. In our approach, we
choose to simplify the tile selection process by determining
scheduling-efficient and communication-efficient tiling pa-
rameters. Since unsuccessful mapping and scheduling may
lead to significant performance degradation due to load im-
balances and process idle times, we give the scheduling cri-
terion greater priority. Thus, in order to efficiently schedule
the above described cyclic mapping scheme, we first need
to ensure that after the completion of the last tile of slice k
(1 ≤ k < K), each process will be able to proceed with the
execution of the first tile of slice k + 1. Lemma 1 proves
that we can meet this demand by a proper selection of cx.



x'

X

T
P
1

P
2

P
3

P
4

c
t

t'

P
1

P
2

P
3

P
4

xS

tS

scheduling

planes

Π=(1,1)
c

t
=Τ/4

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

c
x

(a) Mapping of tiles to processes for ct = T
P

x'

X

T
P
1 t'

xS

tS

scheduling

planes

Π=(1,1)

t=0

P
2

P
3

P
4

P
1

P
2

P
3

P
4

P
1
P
2

P
3
P
4

P
1
P
2

P
3
P
4

t=17

c
t
=Τ/8

K=2

(b) Cyclic mapping of tiles to processes for ct = T
KP

Figure 3. Two mapping alternatives

Lemma 1. If a 2-dimensional iteration space T × X ,
skewed with a skewing factor α and tiled by a rectangu-

lar tiling transformation H−1 =
[

ct 0
0 cx

]
, is cyclically

mapped to P processes and scheduled with scheduling vec-
tor Π = (1, 1), then each process can execute all assigned

tiles without stalling as long as cx <
X − αPct

P − 2
.

Proof. In order to allow the uninterrupted, stall-free execution of
tiles in each process, we need to ensure that after the execution
of the last tile of slice k, all dependencies of the first tile of slice
k + 1 are satisfied. In this way, processes proceed their execution
between slices in successive parallel time steps. Without loss of
generality, we consider the first process in the first slice (k = 0).
The last point �j1 of this process in slice 0 has coordinates �j =

(ct − 1, X + αct), will lie in tile �j1
S

= (0, �X+αct
cx

�) and will

be scheduled at parallel time step T1 = Π�j1
S

= �X+αct
cx

�. The
only intra-process dependence of the first tile of process p0 at slice

with k = 1 is created by the first tile �j2
S

of process pP−1 at slice
with k = 0. One point within this tile is clearly �j2 = ((P −
1)ct, α(P − 1)ct), thus �j2

S
= (P − 1, �α(P−1)ct

cx
)� and T2 =

Πt2 = P − 1 + �α(P−1)ct

cx
�. Hence, in order for the dependence

to be satisfied it must hold T2 ≤ T1 ⇒ P − 1 + �α(P−1)ct

cx
� ≤

�X+αct
cx

� ⇒ P − 2 + α(P−1)ct

cx
< P − 1 + �α(P−1)ct

cx
� ≤

�X+αct
cx

� ≤ X+αct
cx

⇒ cx < X−αPct
P−2

.

In tiling transformations there is a tradeoff between com-
munication overhead and process concurrency. Tiling sacri-
fices concurrency to reduce the communication volume and
the total number of messages. By fine-tuning the tile size
and shape (parameters ct and cx in our case) one needs to
minimize communication overhead without drastically in-
creasing the idle times of processes. The following defini-
tion provides a metric for process concurrency that will be
used to formulate an optimization problem for the selection
of scheduling-efficient tiling parameters (Definition 2).

Definition 1. The concurrency factor (cf) is defined as the
ratio of the parallel time steps during which not all pro-
cesses participate in the execution (non-concurrent parallel
time steps) to the total number of parallel time steps, thus

cf =
Number of non-concurrent parallel time steps

Total number of parallel time steps

Lemma 2. In the family of problems described in Lemma 1
the concurrency factor (cf) is

cf =
2P + � 2α(P−1)ct

cx
�

KP + �α(KP−1)ct+X)
cx

�

Proof. Since the last point in the skewed iteration space has coor-

dinates �j1 = ((KP − 1)ct, α(KP − 1)ct + X), the last tile �j1
S

will have coordinates �j1
S

= (KP − 1, �α(KP−1)ct+X)
cx

�) and

thus will be scheduled at parallel time step Π�j1
S

= KP − 1 +

�α(KP−1)ct+X)
cx

�. Thus, the total number of parallel time steps

is KP + �α(KP−1)ct+X)
cx

� since the first tile is executed at time
step 0. The non-concurrent parallel time steps occur at the begin-
ning of the execution until the last process starts its execution, and
at the end of the execution after the first process ends its execu-
tion. These two cases clearly have equal duration. As shown in
the proof of Lemma 1, the first tile of the last process starts its ex-
ecution at parallel time step P − 1 + �α(P−1)ct

cx
�. Thus, the total

number of non-concurrent parallel time steps is 2P+�2α(P−1)ct

cx
�.

From Definition 1 we have cf =
2P+� 2α(P−1)ct

cx
�

KP+�α(KP −1)ct+X)
cx

�
.

Definition 2. Optimization problem
Select ct, cx: cfmin ≤ cf ≤ cfmax ∧ 1 ≤ cx <
X−αPct

P−2 , cx ∈ Z ∧ 1 ≤ K ≤ T
P , K ∈ Z ∧ KPct = T .



The second requirement is taken from Lemma 1. Fac-
tors cfmin and cfmax are provided by the user and depend
on both the features of the algorithm and the underlying ar-
chitecture. In this way, we have reduced the problem of
finding an efficient tiling transformation to the problem of
providing appropriate concurrency factors to the optimiza-
tion problem of Definition 2. However, the second problem
is much more comprehensible, since it is clear that intuitive
selections (e.g. cfmin = 0.15 and cfmax = 0.2) can lead to
very efficient selections, as will be shown in Section 5.

After selecting a set of scheduling-efficient tiling trans-
formations (pairs of ct and cx) we employ communication
criterions to select communication-efficient members of the
above set. Such criterions are the minimization of the to-
tal number of messages and the minimization of the over-
all communication volume. Lemma 3 quantifies the above
metrics for the problems under consideration.

Lemma 3. In the family of problems described in Lemma 1,
the total number of messages is Ncomm = (KP − 1)�X

cx
	

and the communication volume is Vcomm = (KP −
1)Xmax(d′1).

Proof. Clearly, the number of surfaces that impose communica-
tion between processes is KP − 1 with length X. Thus, the num-
ber of messages per surface is �X

cx
� and the total number of mes-

sages Ncomm = (KP −1)� X
cx

�. Similarly, each surface accounts
for communication data that equal the product of the length sur-
face with the maximum first coordinate of the dependencies in
D′, i.e., max(d′

1). Thus, the overall communication volume is
Vcomm = (KP − 1)Xmax(d′

1).

Summarizing, in order to select an efficient tiling
transformation determined by ct and cx, we first solve the
optimization problem defined in Definition 2 and obtain a
set of scheduling-efficient pairs of ct, cx. In the sequel, we
investigate the efficiency of each pair in terms of commu-
nication using Lemma 3 and result to the final scheduling
and communication-efficient tiling transformations.

Step 4: Local Data Spaces and Communication Sets
On a message-passing platform, each process allocates its
local data space and exchanges communication data with
neighboring ones. These data spaces are used to hold the
data computed in the chains of the tiles assigned to the pro-
cess, as well as the data received by the neighbors. Commu-
nication data are determined by the dependencies. A com-
munication set CS(k, pid) contains all iteration points that
need to be sent to the neighboring process, where k is the
current slice and pid the serial number of the executing pro-
cess. The communication set is given in Definition 3.

Definition 3. The communication set CS(k, pid) is defined
as CS(k, pid) : �j′ = (t′, x′) : �j′ ∈ J ′ ∧ ∃�d′ = (d′1, d′2) ∈
D′ : t′ + d′1 > (kP + pid + 1)ct ∧ �j′ + �d′ ∈ J ′

Algorithm 5: pseudo-code for coarse-grain parallel ex-
ecution of thermal diffusion

for (k = 0; k < K; k++) do1

t0 = (kP + pid)ct;2

Tstart = (αt0/cx)cx;3

Tstop = α(t0 + ct) + X;4

for (T ile = Tstart; T ile < Tstop; T ile+=cx) do5

if valid left tile(pid, k,Tile) then6

MPI Recv(rbuf, cx, MPI DOUBLE, prev, 0,7

MPI COMM WORLD, &status);
unpack(rbuf, Ul);8

for (t′ = 1; t′ < ct and t0 + t′ < T ; t′++) do9

for (x′ =max(T ile, α(t0 + t′) + 1);10

x′ <min(T ile + cx, α(t0 + t′) + X − 1);
x′++) do

t = t′;11

x = x′ − t0 − t′;12

Ul[k][t + 1][x] = (1 − 2θr)Ul[t][x] +13

θr(Ul[t][x−1]+Ul[t][x+1])+∆tF (t, x);
if valid right tile(pid, k,Tile) then14

pack(Ul, sbuf);15

MPI Send(sbuf, cx, MPI DOUBLE, next, 0,16

MPI COMM WORLD);

Step 5: Final SPMD Message-Passing Code
Summarizing, the coarse-grain parallel code for the thermal
diffusion example is shown in Algorithm 5. K (line 1) is the
number of slices. Functions valid left tile (line 6)
and valid right tile (line 14) check whether there is
a valid tile containing at least one iteration point in the tiled
iteration space on the left and on the right of the current tile,
respectively. Function unpack (line 8) copies the received
data from the communication buffer rbuf to the local array
Ul and function pack (line 15) copies the communication
data from Ul into the communication buffer sbuf . Both
functions have trivial implementations based on the defini-
tion of the communication sets CS.

5 Experimental Evaluation

In order to evaluate the performance of the fine-grain
parallel execution against the proposed coarse-grain alter-
native, we measured the total execution time for the thermal
diffusion algorithm, which is a typical representative of this
application family, in five different domains. In addition,
we need to evaluate the efficiency of our proposed approach
concerning the selection of the tiling parameters. Our ex-
perimental platform is a 16-node Linux cluster (Pentium-III
CPU at 800 MHz, 256 MB RAM, 16 KB L1 I cache, 16
KB L1 D cache, 256 KB L2 cache), interconnected with
100 Mbps FastEthernet. Each cluster node runs Linux ker-
nel 2.4.29. We used MPICH v. 1.2.6 MPI implementation,
configured with the Intel C++ compiler v. 8.1.
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(a) parallel exec. time as a function of ct (cx = 512).
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Figure 4. Iteration space 16K × 16K.

Figure 4 shows the total execution time of the fine-grain
and the coarse-grain execution of our benchmark as a func-
tion of ct for cx = 512 (Figure 4(a)) and as a function of
cx for ct = 64 (Figure 4(b)), for an iteration space of size
16K × 16K . For ct = 64 and cx = 512, the tiled algo-
rithm attained the best performance, since it achieved al-
most 50% reduction in the execution time. This reduction
can be attributed to the minimization of the communication
overhead in the parallel execution. In addition, we can also
notice that the performance of the tiled algorithm is greatly
affected by the selection of the parameters ct and cx. This is
also predictable, since small values for ct increase the com-
munication volume and large values of c t increase process
idle times (e.g. if K = 1). Similarly, small values for cx in-
crease the total number of communication messages, while
large values for cx also increase process idle times.

However, the experimental results are not so prominent
for all combinations of ct and cx. Figure 5 presents the total
execution time as a function of ct (Figure 5(b)) and cx (Fig-
ure 5(a)), where all values have been averaged over various
cx-and-ct-ranges, respectively. Especially in Figure 5(a), a
large number of selections for ct and cx lead to larger total
execution times than the fine-grain approach. The average
parallel execution time of 540 different selections for c t and
cx is only 16% smaller than the fine-grain case, while 48%
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(a) parallel exec. time as a function of ct (avg(cx)).
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Figure 5. Iteration space 16K × 16K.

of the selections achieve worse performance than that of the
fine-grain execution. This fact is summarized in Figure 6(a)
for all iteration spaces. In the Y axis we represent the per-
centage of execution trials and in the X axis we represent
the total parallel execution time normalized to the fine-grain
execution time. We observe that a large percentage of se-
lections for ct and cx perform worse than the fine-grain ap-
proach (the area of the plot for t > 1). This fact accentuates
the need for a method to select efficient tiling parameters
for the coarse-grain execution.

Figure 6(b) summarizes the performance across all five
iteration spaces of the “best” tiling transformation, the tiling
transformation selected according to the method proposed
in Section 4 (for cfmin = 0.15 and cfmax = 0.2), the av-
erage of all candidate tiling transformations used (500–600
transformations in each iteration space), and the fine-grain
approach. The results are normalized to the parallel execu-
tion time of the fine-grain case. The selected tiling transfor-
mation performs remarkably well, since it achieves a reduc-
tion of the parallel execution time compared to fine-grain
execution that varies from 22% to 76% depending on the
particular iteration space, while the deviation from the best
tiling transformation varies from 3% to 23, 5%.

Concluding, our experimental results confirmed that the
application of skewing and tiling transformation to the tar-
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Figure 6. Summary of results in all five itera-
tion spaces.

get applications can lead to a drastical reduction of the to-
tal parallel execution time, due to the minimization of the
communication overhead. However, since the parallel ex-
ecution time is very sensitive to the selection of the tiling
parameters, several transformations may even lead to sig-
nificant degradation of performance. The selected param-
eters efficiently cope with the above problem, since they
attain parallel execution times significantly lower than the
fine-grain case and quite close to those achieved by the best
tiling transformations.

6 Conclusions

In this paper we presented an alternative approach to exe-
cute 2-dimensional iteration spaces that result from the dis-
cretization of PDEs. Since the straightforward, fine-grain
execution of such applications incurs significant communi-
cation overheads in scalable parallel architectures, we ap-
plied the skewing transformation to make all dependences
nonnegative and in the sequel tiling transformation to im-
plement coarse-grain parallelism. We employed an effi-
cient cyclic scheme to map tiles to processes and provided

a method to select scheduling-efficient and communication-
efficient tiling transformations. Our experimental results
led to the following three conclusions: (a) the coarse-grain
approach can indeed lead to impressive reductions in over-
all parallel execution times of such applications due to the
reduction of the communication overhead, (b) the perfor-
mance of the tiled algorithm is very sensitive to the tiling
parameters and (c) the proposed method to select efficient
tiling transformation performs remarkably well, since it
provides significant reduction in parallel execution time
compared to the fine-grain approach, without largely devi-
ating from the performance attained by the best tiling trans-
formations.

References

[1] G. Goumas, M. Athanasaki, and N. Koziris. An Ef-
ficient Code Generation Technique for Tiled Iteration
Spaces. IEEE Trans. on Parallel and Distributed Sys-
tems, 14(10):1021–1034, Oct 2003.

[2] G. Goumas, N. Drosinos, M. Athanasaki, and
N. Koziris. Message-Passing Code Generation for Non-
rectangular Tiling Transformations. Parallel Comput-
ing, 32(11):711–732, Nov 2006.

[3] E. Hodzic and W. Shang. On Supernode Transfor-
mation with Minimized Total Running Time. IEEE
Trans. on Parallel and Distributed Systems, 9(5):417–
428, May 1998.

[4] M. Jacobson. Fundamentals of Atmospheric Modeling.
Cambridge University Press, 1999.

[5] K. Morton and D. Mayers. Numerical Solution of
Partial Differential Equations. Cambridge University
Press, Cambridge, UK, 2005.

[6] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery.
Numerical Recipes in C: The Art of Scientific Comput-
ing. Cambridge University Press, New York, NY, USA,
1992.

[7] J. Ramanujam and P. Sadayappan. Tiling Multidimen-
sional Iteration Spaces for Multicomputers. Journal
of Parallel and Distributed Computing, 16:108–120,
1992.

[8] W. Shang and J. Fortes. Time Optimal Linear Sched-
ules for Algorithms with Uniform Dependencies. IEEE
Trans. Comput., 40(6):723–742, 1991.

[9] M. Wolf and M. Lam. A Loop Transformation The-
ory and an Algorithm to Maximize Parallelism. IEEE
Trans. on Parallel and Distributed Systems, 2(4):452–
471, Oct 1991.


