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Abstract

In this paper we revisit the performance issues of the widely used sparse matrix-vector multiplication (SpMxV)

kernel on modern microarchitectures. Previous scientific work reports a number of different factors that may

significantly reduce performance. However, the interaction of these factors with the underlying architectural

characteristics is not clearly understood, a fact that may lead to misguided and thus unsuccessful attempts for

optimization. In order to gain an insight into the details of SpMxV performance, we conduct a suite of experiments

on a rich set of matrices for three different commodity hardware platforms. In addition, we investigate the parallel

version of the kernel and report on the corresponding performance results and their relation to each architecture’s

specific multithreaded configuration. Based on our experiments we extract useful conclusions that can serve as

guidelines for the optimization process of both single and multithreaded versions of the kernel.

Keywords—Sparse matrix-vector multiplication, Multicore architectures, Scientific applications, Performance

evalution

1 Introduction

Matrix-vector multiplication is performed in a large variety of applications in scientific and economic modeling,

signal processing, document retrieval, and others. Quite commonly, the matrix that participates in the computation

is sparse, as for example is the case of matrices arising from the discretization for physical processes. Sparse

matrix-vector computations and, in particular, sparse matrix-vector multiplication (SpMxV) have been recently

categorized as one of the “seven dwarfs”, i.e., seven numerical methods that are believed to be important for

science and engineering for at least the next decade [2]. SpMxV is generally reported to perform poorly on modern

microprocessors (e.g., 10% of peak performance [26]) due to a number of issues concerning the algorithm itself, the

storage formats, and the sparsity patterns of the matrices.

Primarily, matrix-vector multiplication is a memory-bound kernel posing more intense memory access needs than

other traditional algebra kernels, like dense matrix multiplication (MxM) or LU decomposition, which are more
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computationally intensive. MxM and LU benefit from the, so called, surface-to-volume effect, since for a problem

size of n, they perform O(n3) operations on O(n2) amount of data. On the contrary, matrix-vector multiplication

performs O(n2) operations on O(n2) amount of data, which means that the ratio of memory access to floating point

operations is significantly higher. Seen from another point of view, there is little data reuse in the matrix-vector

multiplication, i.e., very restricted temporal locality. This fact greatly degenerates the SpMxV performance expressed

in MFLOPS. Furthermore, in order to avoid extra computation and storage overheads imposed by the large majority

of the zero elements contained in the sparse matrix, the non-zero elements of the matrix are stored contiguously

in memory, while additional data structures assist in the proper traversal of the matrix and vector elements. For

example, the classic Compressed Storage Row (CSR) format [4] uses the row ptr structure to index the start of each

row within the non-zero element matrix a, and the col ind structure to index the column each element is associated

with. These additional data structures used for indexing further degrade the kernel’s performance since they add

additional memory access operations and cache interference. Sparse matrices also create irregular accesses to the

input vector x (CSR format is assumed) that follow the sparsity pattern of the matrix. This irregularity complicates

the utilization of reuse on vector x and increases the number of cache misses on this vector. Finally, there is also

a non-obvious implication in sparsity. The rows of the sparse matrices have varying lengths which are frequently

small. This fact increases the loop overheads since a small number of useful computations is performed in each loop

iteration.

The great importance and the singular performance behavior of SpMxV have attracted intense scientific attention

[1, 5, 8, 11, 12, 15, 17–20, 23–27]. A general conclusion is that SpMxV can be efficiently optimized by exploiting

information regarding the matrix structure and the processor’s architectural characteristics. In general, previous

research focuses on a subset of the reported problems and proposes optimizations applied to a limited number of

sparse matrices. This fact, along with the CPUs used in various previous works, may lead to contradictory conclusions

and, perhaps, to confusion regarding the problems and candidate solutions for SpMxV optimization. In addition,

the exact reason for performance gain after the application of the proposed optimizations is rarely investigated. For

example, blocking implemented with the use of the Block Compressed Storage Row (BCSR) format was proposed by

Im and Yelick [11] as a transformation to tame irregular accesses on the input vector and exploit its inherent reuse,

like in dense matrix optimizations. One-dimensional blocking is also proposed by Pinar and Heath [20] in order to

reduce indirect memory references, while, quite recently, Buttari et al. [5], and Vuduc and Moon [26] accentuate the

merit of blocking (the latter with variable-sized blocks) as a transformation to reduce indirect references and enable

register level blocking and unrolling. However, it is not clarified if the benefits of blocking can be actually attributed

to better cache utilization, memory access reduction, or ILP improvement. Furthermore, White and Sadayappan [27]

report that the lack of locality is not a crucial issue in SpMxV, whereas many important previous works exploit
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reuse on the input vector in order to improve performance [8,11, 18, 19, 24].

The goal of this paper is to assist in understanding the performance issues of SpMxV on modern microprocessors.

To our knowledge, there are no experimental results concerning the performance behavior of this kernel or any of

its optimized versions on current commodity microarchitectures. In order to achieve this goal, we have categorized

the problems of the algorithm as reported in literature and experienced in practice. For each problem we conduct

a series of experiments in order to either quantify or draw a qualitative conclusion of its effect on performance

as accurately as possible. Our experimental results provide valuable insight into the performance of SpMxV on

modern microprocessors and reveal issues that will probably prove particularly useful in the process of optimization.

The code performs poorly on modern microprocessors as well. However, the issues that need to be taken into

consideration in order to optimize it are better understood and quantified. In addition, we develop multithreaded

versions of SpMxV since it is important to evaluate the speedup of the parallelized algorithm for SMP, CMP, and

SMT machines. Although SpMxV is an easily parallelizable code that needs no synchronization or data exchange

between threads, it is far from achieving the theoretically expected linear speedup. In this case, issues arising from

novel multithreaded architectures affect performance considerably and need to be further illuminated and evaluated.

Our experiments for both the single and multithreaded case are executed on three different microprocessors (Intel

Core 2 Xeon , Intel Pentium 4 Xeon, AMD Opteron) for a large suite of 100 sparse matrices selected from Tim

Davis’ collection [7]. Based on the experience gained from the interpretation of the experimental results, we are able

to provide solid guidelines for the optimization of both the single and multithreaded version of SpMxV.

The next of the paper is organized as follows: Section 2 discusses previous work on the optimization of SpMxV

and Section 3 presents the basic kernel and its problems as reported in literature. Section 4 presents a thorough

experimental evaluation of the aforementioned problems in single and multithreaded versions, which leads to a

number of guidelines summarized in Section 5. We conclude this paper with overall conclusions and a discussion of

directions for future work in Section 6.

2 Related work

Because of its importance, sparse matrix-vector multiplication has attracted intensive scientific attention during

the past two decades. The proposal of efficient storage formats for sparse matrices like CSR, BCSR, CDS, Ellpack-

Itpack, and JAD [4, 17, 22] was one of the primary concerns. Elaborating on storage formats, Agarwal et al. [1]

decompose a matrix into three submatrices: the first is dominated by dense blocks, the second has a dense diagonal

matrix, while the third contains the remainder of the matrix elements. By using a different format for each submatrix,

the authors try to optimize execution based on the special characteristics of each submatrix. Temam and Jalby [23]

perform a thorough analysis of the cache behavior of the algorithm, pointing out the problem of the irregular access

pattern in the input vector x. Toledo [24] deals with this problem by proposing a permutation of the matrix that
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favors cache reuse in the access of x. Furthermore, the application of blocking is also proposed in that work in

order to both exploit temporal locality on x and reduce the need for indirect indexing through col ind. Software

prefetching for a and col ind is also used to improve memory access performance. The proposed techniques were

evaluated over 13 sparse matrices on a Power2 processor and achieved a significant performance gain for the majority

of them. White and Sadayappan [27] state that data locality is not the most crucial issue in sparse matrix-vector

multiply. Instead, small line lengths, which are frequently encountered in sparse matrices, may drastically degrade

performance due to the reduction of ILP. For this reason, the authors propose alternative storage schemes that

enable unrolling. Their experimental results exhibited performance gains on a HP PA-RISC processor for each of

the 10 sparse matrices used. Pinar and Heath [20] refer to irregular and indirect accesses on x as the main factors

responsible for performance degradation. Focusing on indirect accesses, the application of one-dimensional blocking

with the BCSR storage format is proposed in order to drastically reduce the number of indirect memory references.

In addition, a column reordering technique which enables the construction of larger dense sub-blocks is also proposed.

An average 1.21 speedup is reported for 11 matrices on a Sun UltraSPARC II processor.

With a primary goal to exploit reuse on vector x, Im and Yelick propose the application of register blocking,

cache blocking, and reordering [10–12]. Moreover, their blocked versions of the algorithm are capable of reducing

loop overheads and indirect referencing while increasing the degree of ILP. Register blocking is the most promising

of the above techniques. The authors also propose a heuristic to determine an efficient block size. They perform

their experiments on four different processors (UltraSPARC I, MIPS 10000, Alpha 21164, PowerPC604e) for a wide

matrix suite involving 46 matrices. For almost a quarter of these matrices, register blocking achieved significant

performance benefits. Geus and Röllin [8] apply software pipelining to increase ILP, register blocking to reduce

indirect references, and matrix reordering to exploit the reuse on x. They perform a set of experiments on a

variety of processors (Pentium III, UltraSPARC, Alpha 21164, PA-8000, PA 8500, Power2, i860 XP) and report

significant performance gains on two matrices originating from the discretization of 3-D Maxwell’s Equations with

FEM. Vuduc et al. [25] estimate the performance bounds of the algorithm and evaluate the register blocked code

with respect to these bounds. Furthermore, they propose a new approach to select near-optimal register block sizes.

Mellor-Crummey and Garvin [15] accentuate the problem of short row lengths and propose the application of the

well-known unroll-and-jam compiler optimization in order to overcome this problem. Unroll-and-jam achieves a

1.11–2.3 speedup on MIPS R12000, Alpha 21264A, Power3-II, and Itanium processors for two matrices taken from

the SAGE package. Pichel et al. [18] model the inherent locality of a specific matrix with the use of distance functions

and improve this locality by applying reordering to the original matrix. The same group proposes also the use of

register blocking to further increase performance [19]. The authors report an average of 15% improvement for 15

sparse matrices on MIPS R10000, UltraSPARC II, UltraSPARC III, and Pentium III processors.
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Buttari et al. [5] provide a performance model for the blocked version of the algorithm based on BCSR format

and propose a method to select dense blocks efficiently. They experiment on a K6, a Power3, and an Itanium II

processor for a suite of 20 sparse matrices and validate the accuracy of the proposed performance model. Vuduc et

al. [26] extend the notion of blocking in order to exploit variable block shapes by decomposing the original matrix

to a proper sum of submatrices storing each submatrix in a variation of the BCSR format. Their approach is tested

on the Ultra2i, Pentium III-M, Power4, and Itanium II processors for a suite of 10 FEM matrices that contain

dense sub-blocks. The proposed method achieves better performance than pure BCSR on every processor, except

for Itanium II. Finally, Willcock and Lumsdaine [28] mitigate the memory bandwidth pressure by providing an

approach to compress the indexing structure of the sparse matrix, sacrificing in this way some CPU cycles. They

perform their experiments on a PowerPC 970 and an Opteron processor for 20 matrices achieving an average of 15%

speedup.

As far as the parallel, multithreaded version of the code is concerned, past work focuses mainly on SMP clusters,

where researchers either apply and evaluate known uniprocessor optimization techniques on SMPs, such as register

or cache blocking [8, 11], or examine reordering techniques in order to improve locality of references and minimize

communication cost [6, 18]. More specifically, Im and Yelick [11] apply register and cache blocking on an 8-way

UltraSparc SMP. They also examine reordering techniques combined with register blocking. However, the results

are satisfactory only in the case of highly irregular sparse matrices, but the scalability of the algorithm is still very

low. Pichel et al. [18] also examine reordering techniques and locality schemes. They propose two locality heuristics

based on row or row-block similarity patterns, which they use as objective functions to two reordering algorithms

in order to gain locality. Results are presented in terms of L1 and L2 cache miss rate reduction based mainly on

a trace-driven simulation. The effect of these reordering techniques in load balancing is also discussed. Geus and

Röllin [8] examine three parallelization schemes using MPI combined with Cuthill-McKee reordering technique in

order to minimize data exchange between processors. Experiments are conducted on a series of high performance

architectures, including, among others, the Intel Paragon and the Intel Pentium III Beowulf Cluster. The authors

also outline the problem of the interconnection bandwidth while commenting on the results. In a higher level,

Catalyuerek and Ayakanat [6] propose an alternative data partitioning scheme based on hypergraphs in order to

minimize communication cost. Finally, Kotakemori et al. [13] evaluate different storage formats of sparse matrices on

a SGI Altix3700 ccNUMA machine using an OpenMP parallel version of the SpMxV code. The authors implement

a NUMA-aware parallelization scheme, which yields almost linear speedup in every case.

Quite recently, Williams et al. [29] have presented an evaluation of SpMxV on a set of emerging multicore architec-

tures. Their study covers a wide and diverse range of high-end chip multiprocessors, including recent multicores from

AMD (Opteron X2) and Intel (Clovertown), Sun’s Niagara2 and platforms comprised of one or two Cell processors.
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The authors offer a clear view of the gap between the attained performance of the kernel, and the peak performance

of each architecture it is executed, both in terms of memory bandwidth and computational throughput. Although

they designate memory bottleneck as the major hurdle of the algorithm from attaining high parallel performance,

they do little effort in estimating its extent, e.g. through quantifying the additional benefit from NUMA-aware mem-

ory allocation, or examining the impact of intra-thread cache sharing and classifying the behavior of the algorithm

according to each matrix’s ability to fit in each platform’s aggregate cache. Besides that, they focus to a large extent

on single-threaded optimizations and evaluate their techniques on a rather small set of matrices (14).

Summarizing on the results of previous research on the field, the following conclusions may be drawn: (a) the

matrix suites used in the experimental evaluations are usually quite small, (b) the evaluation platforms include

previous generation microarchitectures, (c) the conclusions are sometimes contradictory, (d) the performance gains

attained by the proposed methods are not thoroughly analyzed in relevance to the specific problems attacked, and

(e) specific problems of the multithreaded versions are not reported. The goal of this work is to understand the

performance issues of single and multithreaded SpMxV codes on modern microprocessors. For this reason, we employ

a wide suite of 100 matrices, perform a large variety of experiments, and report performance data and information

collected from the performance monitoring facilities provided by the modern microprocessors.

3 Basic algorithm and problems

The most frequently applied storage format for sparse matrices is the Compressed Storage Row (CSR) [4]. Ac-

cording to this format, the nnz non-zero elements of a sparse matrix with n rows are stored contiguously in memory

in row-major order. The col ind array of size nnz stores the column of each element in the original matrix, and

the row ptr array of size n +1 stores the beginning of each row. Figure 1a shows an example of the CSR format for

a sparse 6 × 6 matrix. Figures 1b and 1c show the implementation of the matrix-vector multiplication for a dense

N × M matrix and for a sparse matrix stored in CSR format, respectively.� �� �� �� �� �� �� �� �
� � � � � �� 	 � 
 � �� � � � � �� 
 � � � � � �� � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � ��� � � ! " #

� � � �� � � � �$ � %  & ' $
(a) CSR Storage format.

for (i=0; i<N; i++)

for (j=0, l=i*M; j<M; j++)

y[i] += a[l+j]*x[j];

(b) Dense Matrix

for (i=0; i<N; i++)

for (j=row_ptr[i]; j<row_ptr[i+1]; j++)

y[i] += a[j]*x[col_ind[j]];

(c) Sparse Matrix

Figure 1: Example of the CSR storage format, dense and sparse matrix-vector multiplication kernels.
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According to the literature, SpMxV presents a set of problems that can potentially affect its performance. These

problems are listed below.

(a) No temporal locality in the matrix. This is an inherent problem of the algorithm which is irrelevant to the

sparsity of the matrix. Unlike other important numerical codes, such as Matrix Multiplication (MxM) and LU

decomposition, the elements of the matrix in SpMxV are used only once [5, 15].

(b) Indirect memory references. This is the most apparent implication of sparsity. In order to save memory space

and floating-point operations, only the non-zero elements of the matrix are stored. To achieve this, the indices to

the matrix elements need to be stored and accessed from memory via the col ind and row ptr data structures.

This fact implies additional load operations, traffic for the memory subsystem, and cache interference [20].

(c) Irregular memory accesses to vector x. Unlike the case of dense matrices where the access to the vector x is

sequential, this access in sparse matrices is irregular and depends on the sparsity structure of the matrix. This

fact complicates the process of exploiting any spatial reuse in the access to vector x [8, 10, 18].

(d) Short row lengths. Although not so obvious, this problem is very often met in practice. Many sparse matrices

exhibit a large number of rows with short length. This fact may degrade performance due to the significant

overhead of the outer loop when the trip count of the inner loop is small [5, 27].

In the next section we will evaluate the impact of each of the above reported problems on the performance of the

algorithm when executed on modern microprocessors.

4 Performance evaluation

4.1 Experimental process and preliminary evaluation

Our experiments were performed on a set of 100 matrices (see Table 1), the majority of which was selected

from Tim Davis’ collection [7]. The first matrix is a dense 1000 × 1000 matrix, matrices 2–45 are also used in

SPARSITY [10], matrix #46 is a 100000 × 100000 random sparse matrix with roughly 150 non-zero elements per

row, matrix #87 is a matrix obtained by a 5-pt finite difference problem for a 202 × 202 × 102 regular grid created

by SPARSKIT [21], while the rest are the largest matrices of the collection both in terms of non-zero elements and

number of rows. All matrices are stored in CSR format.

The hardware platforms used for the evaluation of the kernel consist of a 2-way SMP Intel Core 2 Xeon proces-

sor (Woodcrest), a 2-way SMP Intel Pentium 4 Xeon (Netburst), and a 2-way ccNUMA AMD Opteron (Opteron).

These processors may be considered as a representative set of commodity hardware platforms that incorporate inno-

vative low-end technologies and support the execution of multiple software or hardware threads on the same die. The

set of processors used presents a variety of microarchitectural characteristics which allow for a better understanding
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Matrix nrows nnz ws(KB) Matrix nrows nnz ws(KB)
001.dense 1,000 1,000,000 15,648 051.Hamrle3 1,447,360 5,514,242 120,083
002.raefsky3 21,200 1,488,768 23,759 052.ASIC 320ks 321,671 1,827,807 36,099
003.olafu 16,146 515,651 8,435 053.Si87H76 240,369 5,451,000 90,806
004.bcsstk35 30,237 740,200 12,274 054.SiNa 5,743 102,265 1,732
005.venkat01 62,424 1,717,792 28,304 055.ship 001 34,920 2,339,575 37,374
006.crystk02 13,965 491,274 8,003 056.af 5 k101 503,625 9,027,150 152,853
007.crystk03 24,696 887,937 14,453 057.ASIC 680k 682,862 3,871,773 76,501
008.nasasrb 54,870 1,366,097 22,631 058.bcsstk37 25,503 583,240 9,711
009.3dtube 45,330 1,629,474 26,523 059.bmw3 2 227,362 5,757,996 95,297
010.ct20stif 52,329 1,375,396 22,717 060.bundle1 10,581 390,741 6,353
011.af23560 23,560 484,256 8,119 061.cage13 445,315 7,479,343 127,302
012.raefsky4 19,779 674,195 10,998 062.turon m 189,924 912,345 18,707
013.ex11 16,614 1,096,948 17,529 063.ASIC 680ks 682,712 2,329,176 52,394
014.rdist1 4,134 94,408 1,572 064.thread 29,736 2,249,892 35,852
015.av41092 41,092 1,683,902 27,274 065.e40r2000 17,281 553,956 9,061
016.orani678 2,529 90,158 1,468 066.sme3Da 12,504 874,887 13,963
017.rim 22,560 1,014,951 16,387 067.fidap011 16,614 1,091,362 17,442
018.memplus 17,758 126,150 2,387 068.fidapm11 22,294 623,554 10,266
019.gemat11 4,929 33,185 634 069.gupta2 62,064 2,155,175 35,129
020.lhr10 10,672 232,633 3,885 070.helm2d03 392,257 1,567,096 33,679
021.goodwin 7,320 324,784 5,246 071.hood 220,542 5,494,489 91,020
022.bayer02 13,935 63,679 1,322 072.inline 1 503,712 18,660,027 303,369
023.bayer10 13,436 94,926 1,798 073.language 399,130 1,216,334 28,360
024.coater2 9,540 207,308 3,463 074.ldoor 952,203 23,737,339 393,213
025.finan512 74,752 335,872 7,000 075.mario002 389,874 1,167,685 27,383
026.onetone2 36,057 227,628 4,402 076.nd12k 36,000 7,128,473 112,226
027.pwt 36,519 181,313 3,689 077.nd6k 18,000 3,457,658 54,448
028.vibrobox 12,328 177,578 3,064 078.pwtk 217,918 5,926,171 97,704
029.wang4 26,064 177,168 3,379 079.rail 79841 79,841 316,881 6,823
030.lnsp3937 3,937 25,407 489 080.rajat31 4,690,002 20,316,253 427,363
031.lns 3937 3,937 25,407 489 081.rma10 46,835 2,374,001 38,191
032.sherman5 3,312 20,793 403 082.s3dkq4m2 90,449 2,455,670 40,490
033.sherman3 5,005 20,033 430 083.nd24k 72,000 14,393,817 226,591
034.orsreg 1 2,205 14,133 273 084.af shell9 504,855 9,046,865 153,190
035.saylr4 3,564 12,940 286 085.kim2 456,976 11,330,020 187,742
036.shyy161 76,480 329,762 6,945 086.rajat30 643,994 6,175,377 111,584
037.wang3 26,064 177,168 3,379 087.fdif202x202x102 4,000,000 27,840,000 528,750
038.mcfe 765 24,382 399 088.sme3Db 29,067 2,081,063 33,198
039.jpwh 991 991 6,027 117 089.stomach 213,360 3,021,648 52,214
040.gupta1 31,802 1,098,006 17,902 090.thermal2 1,228,045 4,904,179 105,410
041.lp cre b 9,647 260,785 4,301 091.F1 343,791 13,590,452 220,408
042.lp cre d 8,894 246,614 4,062 092.torso3 259,156 4,429,042 75,278
043.lp fit2p 3,000 50,284 856 093.cage14 1,505,785 27,130,349 459,204
044.lp nug20 15,240 304,800 5,120 094.audikw 1 943,695 39,297,771 636,146
045.apache2 715,176 2,766,523 59,989 095.Si41Ge41H72 185,639 7,598,452 123,077
046.random100000 100,000 14,977,726 236,371 096.crankseg 2 63,838 7,106,348 112,533
047.bcsstk32 44,609 1,029,655 17,134 097.Ga41As41H72 268,096 9,378,286 152,819
048.msc10848 10,848 620,313 9,947 098.af shell10 1,508,065 27,090,195 458,630
049.msc23052 23,052 588,933 9,742 099.boneS10 914,898 28,191,660 461,938
050.bone010 986,703 36,326,514 590,728 100.msdoor 415,863 10,328,399 171,128

Table 1: Matrix suite.

of the performance of the parallel SpMxV kernel. Netburst is a Simultaneous Multithreading (SMT) processor,

where the architectural state of the processor is duplicated, and every other processor resource is shared, statically

or dynamically, between the two executing threads (see Figure 2). Woodcrest and Opteron are Chip Multiproces-

sors (CMP), where two processor cores are incorporated into the same die and share the higher levels of the cache

hierarchy (Woodcrest) or the integrated memory controllers (Opteron). Looking out of the die, there also exist

considerable architectural differences; Netburst and Woodcrest are 2-way SMP machines which access the shared

memory through the same Front-Side Bus (FSB) (Figure 3a), while Opteron is a cache-coherent NUMA machine,

where each processor has its own memory controller which controls different memory banks (Figure 3b). A more
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Platform Netburst Opteron Woodcrest

Clockspeed 2.8GHz 1.8GHz 2.6GHz

L1 - data 16KB, 8-way 64KB, 2-way 32KB, 8-way

L1 - instruction 12K µops 64KB, 2-way 32KB, 8-way

L2 - unified 1MB, 8-way
1MB, 16-way,

exclusive
4MB, 16-way

#HW threads 4 4 4

Threads arrangement
2 SMP Processors
× 2 Hyperthreads

2 ccNUMA Processors
× 2 Cores

2 SMP Processors
× 2 Cores

Shared resources

within physical

package

all caches, execution
resources, instr.

fetch-decode-schedule-
retirement logic

memory controller,
hyper-transport links

L2 cache

Table 2: Specifications of hardware platforms used.
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Figure 2: The HyperThreading technology of the Netburst microarchitecture. The architectural state of the processor
is duplicated, thus forming two logical processors recognized by the operating system. Every other resource of the
processor is dynamically or statically shared between the two hardware contexts.

detailed description of each processor is presented in Table 2.

All systems run Linux (kernel version 2.6) for the x86 64 ISA, and all programs were compiled using gcc version

4.1 with the -O3 and -funroll-loops optimization switches turned on. The latter switch causes the compiler to

apply aggressive loop unrolling to all loops of the program. In our experience, the unroller of version 4.1 of gcc

can provide significant speedup for tight loops. In order to confirm that loop unrolling is beneficial for the SpMxV

code, we conducted experiments with the kernel compiled without unrolling. A summary of the results obtained is

presented in Table 3, where it is shown that this compiler optimization provides significant speedup, especially in

the case of the Woodcrest processor.

The experiments were conducted by measuring the execution time of 128 consecutive SpMxV operations with

randomly created x vectors for every matrix in the set and for each different microprocessor. In order to evaluate
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Figure 3: The Xeon SMP(a) and the ccNUMA Opteron (b) architectures. Both cores of Woodcrest share the
L2-cache and the Bus Interface Unit (BIU), which interfaces them to the common FSB and the common memory
controller (MC). In contrast, Opteron cores share only the HyperTransport links and a memory controller integrated
to the same physical package. Each memory request is served independently for each package through the integrated
memory controller. Remote memory accesses are routed to the other package’s memory controller through the
HyperTransport links.
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Processor
matrices with
speedup > 10%

average
speedup

max
speedup

Woodcrest 70 1.41 2.56

Netburst 21 1.21 1.65

Opteron 13 1.21 1.46

Table 3: Performance impact of loop unrolling on SpMxV kernel.

performance, we used the floating point operations per second (FLOPS) metric of each run, which was calculated by

dividing the total number of floating point operations (2×nnz) by the execution time. We applied double precision

arithmetic and used 64-bit size integers for the representation of col ind and row ptr indices, despite the fact that

this work focuses on matrices that fit completely into main memory and for most modern systems 32-bits would

suffice. This decision was based on the fact that memory size increases with a very large rate and it won’t be long

before matrices that require 64-bit integers can be stored exclusively into main memory. It should be noted that we

made no attempt to artificially pollute the cache after each iteration, in order to better simulate iterative scientific

application behavior, where the data of the matrices is present in the cache because either it has just been produced

or was recently accessed. Apart from the execution time, we also measured a variety of performance monitoring

events via the interface provided by each processor.

Processor
matrices with
speedup > 10%

average
speedup

max
speedup

Woodcrest 84 1.90 2.27

Netburst 93 2.29 2.81

Table 4: Performance impact of hardware prefetching on SpMxV kernel for Intel processors.

One of the most prominent characteristics of modern microprocessors is hardware prefetching. Hardware prefetch-

ing is a technique to mitigate the ever-growing memory wall problem by hiding memory latency. It is based on a

simple hardware predictor that detects reference patterns (e.g., serialized accesses) and transparently prefetches

cache-lines from main memory to the CPU cache hierarchy. In order to gain a better insight into the performance

issues involved, we conducted experimental tests to evaluate the effect of hardware prefetching on the SpMxV kernel

by disabling it. We present results only for Intel processors since there does not seem to be a (documented) way to

disable hardware prefetching for AMD processors. A summary of the results obtained is presented in Table 4. Note

that there was no case where hardware prefetching had a negative impact on performance.

4.2 Single-threaded evaluation

4.2.1 Basic performance of serial SpMxV

Figure 4 shows the detailed performance results for the SpMxV kernel in terms of MFLOPS for each matrix and

architecture in the experimental set. To gain a better understanding of the results, we consider the benchmark

of a Dense Matrix-Vector Multiplication (DMxV) for a dense 1024 × 1024 matrix as an upper bound for the peak

11
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Figure 4: Performance of the SpMxV kernel: MFLOPS for each matrix and architecture.

performance of the SpMxV kernel. Summarized results are presented in Table 5. As expected, the more recent

Woodcrest processor outperforms the other two in the whole matrix set. Moreover, while Netburst and Opteron

exhibit similar behavior for each matrix, Woodcrest deviates greatly in some cases. This is apparent, for example,

in matrices #14, #16, and #54, where the performance for the Woodcrest increases by a large factor. This is,

most probably, due to its larger L2 cache. Furthermore, it is clear from Figure 4 that the performance across the

matrix set has great diversity. In order to further elaborate on this observation, we make a distinction between two

different classes in the matrix set; matrices whose working set fits perfectly into L2 cache, and thus experience only

compulsory misses, and those whose working set is larger than the L2 cache size and may also experience capacity

misses. The working set (ws) in bytes assuming double precision arithmetic and 64-bit integer indexing is computed

by the formula

ws = (nnz × 2 + nrows × 2 + ncols) × 8,

where nrows and ncols are the number of rows and columns of the input matrix, respectively, and nnz is the number

of non-zero elements of the matrix. Figure 5 presents the performance attained by each matrix relative to its working

set. The vertical line in each graph designates the size of L2 cache for each architecture. This figure clarifies that

the great differences between the performance of various matrices are due to the size of their working sets. If the

working set of a matrix fits in the cache, then, obviously, significantly higher performance should be expected. It
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is evident that the performance issues involved for each category are different and comparing the performance of

matrices from different classes may lead to false conclusions.

Processor max (MFLOPS) min (MFLOPS) average (MFLOPS) DMxV (MFLOPS)

Woodcrest 1208.07 185.73 495.53 790.66

Netburst 615.15 112.15 297.88 658.82

Opteron 494.51 119.97 273.72 507.49

Table 5: Summarized results for the performance of the SpMxV kernel.
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Figure 5: Performance of the SpMxV kernel in relation to the working set size for all architectures. The vertical line
in each graph designates the size of the L2 cache for each architecture.

Additionally, Figure 6 presents the performance of each matrix with respect to the L2 cache miss-rate as measured

from the performance counters of each processor. As anticipated, working sets that are smaller than the cache size

exhibit close to zero L2 miss-rate. At a coarser level, there seems to be a correlation between the performance in

FLOPS and L2 misses. Regardless, the L2 miss-rate metric does not suffice alone to understand the performance of

the kernel. For example, there are cases where a great increase in the miss-rate does not have an equivalent effect

on performance, and matrices with similar miss-rates have significantly varying MFLOPS.
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Figure 6: Performance of the SpMxV kernel in relation to the L2 cache miss-rate as reported from the performance
counters.

4.2.2 Irregular accesses

In order to evaluate the performance impact of irregular accesses on x, we have developed a benchmark, henceforth

called noxmiss, which tries to eliminate cache misses on vector x. More precisely, noxmiss zeroes out the col ind

array, so that each reference to x accesses only x[0] resulting in an almost perfect access pattern on x. Note that

the noxmiss version of the algorithm differs from the standard one only in the values of the data included in the

col ind array, and thus executes exactly the same operations. Obviously, its calculations are incorrect but it is quite
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safe to assume that any performance deviation observed between the two versions is due to the effect of irregular

accesses on the input vector x. Results of the experiments for the noxmiss are presented in Table 6.

Processor
Speedup # Matrices

average max Speedup > 10% Speedup > 20% Speedup > 30%

Woodcrest 1.27 1.74 28 15 11

Netburst 1.33 2.91 26 13 6

Opteron 1.28 2.37 32 16 10

Table 6: Summarized results for the noxmiss benchmark. The table presents the average and maximum speedup,
and the number of matrices that encountered a minimum performance gain of 10%, 20%, and 30%.

It is worth noticing that only a small percentage of the matrices (no more than 1/3 of the total matrix set) did

encounter a significant amount of performance speedup of over 10% for all processors. This means that the irregular

access pattern of SpMxV is not the prevailing performance problem. For the large majority of matrices, it seems

that the access on x presents some regularity that either favors data reuse from the caches or exhibits patterns

that can be detected by the hardware prefetching mechanisms. However, the majority of matrices that performed

rather poorly on the standard benchmark encountered quite significant speedup on the noxmiss benchmark. This

leads to the conclusion that there exists a subset of matrices where the irregular accesses on x pose a considerable

impediment to performance. These matrices have a rather irregular non-zero element pattern, which finally leads to

poor access and low reuse on x and tends to degrade performance.

4.2.3 Short row lengths

Short row lengths that are frequently met in sparse matrices lead to a small trip count in the inner loop, a fact that

may degrade performance due to the increased overhead of the loops. In order to evaluate the impact of short row

lengths on the performance of SpMxV, we focus on matrices that include a large percentage of short rows. Figure 7

shows the performance of matrices in which more than 80% of the rows contain less than eight elements. The x-axis

sorts these matrices by their ws. The vertical line represents the cache size of each processor and the horizontal line

represents the average performance across all matrices (see Table 5). The obvious conclusion that can be drawn

from Figure 7 is that matrices with large working sets and many short rows exhibit performance significantly lower

than the average. This performance degradation could be attributed to the loop overhead. However, the fact that

matrices with many short rows and small working sets achieve remarkably good performance provides a hint that

loop overhead should not be the only factor. Another important observation that supports the above point is that

the matrices reported in Figure 7 coincide, with few exceptions, with the matrices that benefited by the noxmiss

benchmark. These facts guide us to the conclusion that short row lengths may indicate a large number of cache

misses for the x vector. This can be explained by the fact that short row lengths increase the possibility to access

completely different elements of x in subsequent rows.
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Figure 7: Performance of matrices with small number of elements, less than 8 for 80% or more of their rows, in
relation to their working set. Vertical line marks the L2 cache size for each processor. Horizontal line marks the
average performance.

4.2.4 Indirect memory references

Two indirect memory accesses exist in the SpMxV kernel. One in row ptr to determine the bounds of the

inner loop and one for the x access (col ind). To investigate the effect of the indirect memory references in the

performance of the kernel, we used synthetic matrices with a constant number of contiguous elements per row. These

matrices enable us to eliminate both cases of indirect accesses by replacing them with sequential ones (noind-rowptr,

noind-colind). Next, we compare the performance of the new versions with standard in order to attain a qualitative

view on the performance impact of the indirect references. We applied the original SpMxV kernel and the modified

versions on a number of synthetic matrices with 1,048,576 elements and varying row length.
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Figure 8: Performance of the standard, noind-rowptr, and noind-colind versions for different number of elements per
row.

Figure 8 summarizes the performance measured for a subset of the row lengths applied. Note that the performance

does not significantly deviate for different row lengths. It is clear that the indirect memory references in row ptr

do not affect performance. This is quite predictable since these references are rare and replace an already existing

overhead in the inner loop initialization. On the other hand, the overhead in the indirect access of x through

col ind leads to a dramatic degradation in performance. Regardless, this degradation of performance should not be

attributed to the actual indirect reference per se, since the need of indirect access to x at the algorithm level have a

series of side-effects that are tightly coupled to that need. Specifically, the col ind structure increases significantly

the working set of the algorithm, which can greatly affect performance as it is discussed in the next section, ruins

locality of references to x, since it leads to irregular accesses, and finally, adds an additional instruction and a RAW
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dependence in the inner loop of the algorithm, which may further degrade performance by incurring pipeline stalls.

In practice, it is very difficult to decouple these repercussions of indirect references and examine the effect of each

one independently. In our case, the noind-colind benchmark accounts for all the above considerations as a whole,

except for the reference pattern on x, which was the same for noind-colind and standard benchmarks; this issue was

separately addressed in Section 4.2.2.

4.2.5 Lack of temporal locality

Generally, the lack of temporal locality is an issue that can greatly affect performance. Nevertheless, the data

structures of CSR (Figure 1) are accessed in a rather regular and streaming pattern with unit stride. Consequently,

the hardware prefetcher of modern microarchitectures is able to detect such simple access patterns and transparently

fetch their corresponding cache-lines from memory (see Section 4.1 for an experimental evaluation of hardware

prefetching on SpMxV). Thus, it is quite safe to assume that the lack of temporal locality in the matrix causes an

insignificant number of cache misses, and therefore, performance is not directly affected by this particular factor.

On the other hand, the lack of temporal locality has an important implication on the ratio of floating point

operations to memory accesses, which can greatly affect performance. As a result of this lack of locality and of the

one-pass nature of the algorithm, the SpMxV kernel performs O(n2) floating point operations and O(n2) memory

operations, which further accentuates the memory wall problem as compared to other computational kernels, like

MxM, which perform O(n3) floating point operations and O(n2) memory operations. Therefore, the performance

of the kernel in the systems under consideration is not determined by the processor speed, but by the ability of

the memory subsystem to provide data to the CPU [9]. In order to further illuminate this characteristic of the

kernel, we performed a simple, comparative set of experiments. We used 32-bit integers instead of 64-bit for the

col ind structure in order to reduce the total size of the working set. This modification led eventually to a 22.4%

average reduction of the working set on every matrix. Respectively, Table 7 shows the average speedup attained for

each processor over all matrices. It is quite impressive that the alleviation of the memory bus pressure in terms of

data volume led to an almost analogous increase in performance. These results complement the observations from

the noind-colind benchmark, where the dramatic increase in performance could be rather safely attributed to the

significant reduction of the working set. The col ind structure consumes a great portion of the algorithm’s working

set, since its size equals the non-zero elements of the sparse matrix.

Processor average speedup

Woodcrest 1.20

Netburst 1.29

Opteron 1.17

Table 7: Average speedup over all matrices achieved by each processor using 32-bit indexing in col ind structure,
instead of 64-bit. This corresponds to an average 22.4% reduction in the working set of the algorithm.
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4.2.6 Interpretation of the experimental results

Based on the experimental evaluation of the previous sections, a number of interesting conclusions for the single-

threaded version can be drawn. Firstly, the performance of the kernel is greatly affected by the matrix working

set. As shown in Figure 5, matrices with working sets that entirely fit in the L2 cache exhibit a significantly

higher performance. However, since these matrices correspond to small problems, their optimization is of limited

importance, and thus, we focus on matrices with large working sets that do not fit in the L2 cache. In addition,

reduction of the ws for the same problem releases memory bus resources and leads to significant execution speedup.

The memory intensity of the algorithm along with the effects of the indirect memory reference to x are the most

crucial factors for the poor performance of SpMxV and affect all matrices. On the other hand, the irregularity in the

access of x and the existence of many short rows affect performance at a smaller range and relate to a rather limited

subset of the matrices. Finally, the lack of temporal locality in the matrix structures does not affect performance

directly through issues that could be optimized, e.g., cache misses, but inherently increases the number of memory

accesses.
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Figure 9: Conclusive performance results of the SpMxV kernel for all architectures.

In an attempt to quantify the effect of each of the aforementioned issues, we performed a statistical analysis of

our results that is summarized in Figure 9, where a number of bars are included for each architecture. The first

three bars refer to benchmarks applied to the dense matrix. Specifically, the first bar (dmv) corresponds to a dense

matrix-vector multiplication benchmark with the dense matrix stored in the normal dense format. The second bar

refers to a dense matrix-vector multiplication benchmark with the matrix stored in CSR format but with indirect

referencing through col ind disabled (csr-dense-noind-colind), and the third bar refers to a dense matrix-vector

multiplication benchmark with the matrix stored in normal CSR format. The csr-avg-nosr-reg bar represents the

average performance across all matrices in the suite with working sets larger than the L2-cache size, while the rest

of the bars correspond to all possible subsets of these matrices based on their regularity (-irregular and -regular)

and on whether they are dominated by short rows or not (-sr and -nosr). The criterion for the irregularity is the

presence of a significant speedup (> 10%) in the noxmiss benchmark, while for the dominance of short rows is the

17



presence of a large percentage (> 80%) of small row lengths (< 8). Note that all matrices involved in this graph

have working sets larger than the L2-cache size. The numbers over the bars indicate the number of matrices that

belong to the particular set. Note that there exist too few matrices that are dominated by short rows and do not

face performance degradation due to irregularity. This observation further supports our assumption that short rows

increase the possibility for irregular accesses on x.

The most important observation from the figure is that one could set three levels of performance. The performance

level determined by DMxV, the average performance level and the lowest level determined by “bad” matrices with

irregularity and dominating short row lengths. Roughly speaking, the dramatic degradation (slowdown by a factor

of about 2) of performance between the DMxV and the average level is due to the indirect references through

col ind. From that level, if a matrix exhibits some poor characteristics, like irregularity and many short rows, the

performance may further drop by a factor of about 1.35. On the other hand, if a matrix is not dominated by short

rows and accesses x in a regular manner, its performance may exhibit a 1.1 speedup to that of the average and reach

that of dense matrices stored in CSR. Note, also, that the majority of the matrices falls in that last category.

4.3 Multithreaded evaluation

The SpMxV kernel is an easily parallelizable kernel since there does not exist any loop-carried dependency that

could render the parallelization of SpMxV a more painful task. Nevertheless, there exist a number of issues that

can significantly affect performance and should be considered during the parallelization process. These issues will

be addressed in the following sections.

For the parallelization of the SpMxV kernel, we used explicit threading through the NPTL 2.3.6 library, which

implements the POSIX threads. The system call interface provided by the Linux scheduler was also used in or-

der to explicitly assign threads to specific processing elements (logical processors). In particular, we used the

sched setaffinity system call. The rest of the experimental configuration (compiler and optimization flags, hard-

ware platform, matrix set) and the experimental process used were the same as described for the single-threaded

evaluation.

In order to better model the underlying architecture and reveal any architecture-specific advantages or dis-

advantages, we used different configurations for the multithreaded execution. Specifically, we use the notation

P ×T = nthreads to denote that we use P physical processors (packages) and T logical processors (hyperthreads or

cores) within the same package. Thus, the notation 1× 2 means that we use two threads in total which are mapped

to a single physical package but in different logical processors within that package. Conversely, the notation 2 × 1

means that each thread is mapped to a single logical processor in different physical packages.
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Figure 10: Load distribution (total instructions executed) between the row-based and the non-zero-based partitioning
schemes. The non-zero-based scheme leads to much better load distribution.

4.3.1 Load balancing issues

An important issue that arises when parallelizing the SpMxV kernel is the load balance among the different

threads since the sparsity pattern varies within a matrix. In order to measure the load balancing between the

threads, we have used the following metric:

load-imbalance =
# instructions of the most loaded thread

# instructions of a thread

The actual number of instructions executed by each thread was obtained through the performance counters of the

processors.

At first we split the sparse matrix row-wise assigning the same number of rows to each thread; we call this

partitioning scheme nrows-bal. The results for two threads on Netburst are also presented in Figure 10, from which

it is obvious that the two threads are not balanced. The average load-imbalance factor rises up to 1.26 for this

scheme, and 49 matrices had a load-imbalance factor greater than 1.05. This is quite predictable since, in general,

the non-zero elements of a sparse matrix are not uniformly distributed over its rows. Consequently, if the sparsity

pattern of the matrix is biased towards the upper or lower half, this näıve scheme yields poor results.

A more sane partitioning scheme is to split the matrix row-wise such that the same amount of non-zero elements

would be assigned to each thread; we will call this scheme nnz-bal. The split-points in the non-zero element array a

are at positions k × nnz

nthreads
, where k = 1, 2, . . . ,nthreads . In Figure 10, the load-imbalance factor for two threads

with this partitioning scheme is depicted. It is obvious that this scheme leads to better load balance. The average

load-imbalance factor is 1.05, and only for 22 matrices did the load-imbalance factor surpassed 1.05. It is worth
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Platform
1× 2 2× 1 2× 2

nrows-bal nnz-bal nrows-bal nnz-bal nrows-bal nnz-bal

Netburst 1.087 1.109 (+2.2%) 1.159 1.183 (+2.4%) 1.050 1.076 (+2.6%)

Woodcrest 1.853 1.967 (+11.4%) 1.336 1.372 (+3.6%) 2.585 2.793 (+20.8%)

Opteron 1.618 1.700 (+8.2%) 1.544 1.628 (+8.4%) 2.217 2.405 (+18.8%)

Table 8: Impact of load-balancing to different thread mappings (speedup).

noticing here, however, that although this scheme almost equally distributes non-zero elements among threads,

there exist matrices that do not benefit significantly. This is mainly due to the fact that different sparsity patterns

lead to different instruction streams regardless of the number of non-zero elements assigned to each thread. For

example, if a thread is assigned a large number of short rows, then it will be further burdened from an increased

amount of loop control instructions (see Section 4.2.3). A more sophisticated partitioning scheme, either dynamic

or static, that will better consider these issues is a matter of future research. In the following, we use the nnz-bal

scheme since it provides a rather balanced split. Table 8 depicts the speedup achieved by different thread mappings

using the two partitioning schemes. The nnz-bal, which better balances the computations of the kernel, provides an

additional improvement in performance, which might reach 20% for a four-thread configuration.

4.3.2 Shared Memory architectures

In this section, we present and discuss the aggregate results of the SpMxV kernel on every architecture and for

each possible multithreading scheme. We focus specifically on issues that arise when certain architecture resources,

such as processor internal resources, caches, or main memory, are shared among the processing elements. Table 9 and

Table 10 present the speedup (average, minimum, maximum) and the absolute performance in MFLOPS achieved

by each architecture for every multithreading scheme, respectively. Again here, we separate between matrices that

perfectly fit into the effective cache size of the architecture and matrices that do not. The effective cache size is the

total L2-cache size that is available for each multithreading scheme. For example, the effective cache size for a 1× 2

scheme on Opteron, which has a private L2-cache for each core, is double the real L2-cache size, since every thread

has the same amount of L2-cache storage as in the serial case, but half the working set. On Netburst and Woodcrest,

on the other hand, the effective cache size in such case is the same as in the serial one, since their processing elements

share the L2-cache. Figures 11, 12, and 13 depict the actual speedup achieved by each scheme and architecture for

every matrix. Matrices are sorted according to their working sets, while vertical lines denote the effective cache size

visible from each multithreading scheme.

It is obvious from the above tables and figures, that the scalability of the kernel is very poor, especially when

the working set does not fit in cache, despite the minimal requirements of the algorithm for data exchange and

synchronization. This fact along with the inherent memory intensity of the algorithm lead us to the assumption that

the main bottleneck of the parallel version of SpMxV on a shared memory architecture should be the simultaneous

20



00
8.
na
sa
sr
b

01
0.
ct2

0s
tif

00
2.
ra
ef
sk
y3

00
9.
3d
tu
be

01
5.
av
41
09
2

07
5.
m
ar
io0

02
00
5.
ve
nk
at
01

07
3.
lan

gu
ag
e

08
8.
sm

e3
Db

07
0.
he
lm
2d
03

06
9.
gu
pt
a2

06
4.
th
re
ad

05
2.
AS

IC
_3
20
ks

05
5.
sh
ip_

00
1

08
1.
rm
a1
0

08
2.
s3
dk
q4
m
2

08
9.
sto

m
ac
h

06
3.
AS

IC
_6
80
ks

07
7.
nd
6k

04
5.
ap
ac
he
2

09
2.
to
rs
o3

05
7.
AS

IC
_6
80
k

05
3.
Si
87
H7

6
07
1.
ho
od

05
9.
bm

w3
_2

07
8.
pw
tk

09
0.
th
er
m
al2

08
6.
ra
jat
30

07
6.
nd
12
k

09
6.
cr
an
ks
eg
_2

05
1.
Ha

m
rle
3

09
5.
Si
41
Ge

41
H7

2
06
1.
ca
ge
13

09
7.
Ga

41
As
41
H7

2
05
6.
af
_5
_k
10
1

08
4.
af
_s
he
ll9

10
0.
m
sd
oo
r

08
5.
kim

2
09
1.
F1

08
3.
nd
24
k

04
6.
ra
nd
om

10
00
00

07
2.
inl
ine

_1
07
4.
ldo

or
08
0.
ra
jat
31

09
8.
af
_s
he
ll1
0

09
3.
ca
ge
14

09
9.
bo
ne
S1

0

08
7.
fd
if2
02
x2
02
x1
02

05
0.
bo
ne
01
0

09
4.
au
dik

w_
1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

Sp
ee

du
p

03
9.
jpw

h_
99
1

03
4.
or
sr
eg
_1

03
5.
sa
ylr
4

03
8.
m
cf
e

03
2.
sh
er
m
an
5

03
3.
sh
er
m
an
3

03
0.
lns

p3
93
7

03
1.
lns

_3
93
7

01
9.
ge
m
at
11

04
3.
lp_

fit2
p

02
2.
ba
ye
r0
2

01
6.
or
an
i67

8
01
4.
rd
ist
1

05
4.
Si
Na

02
3.
ba
ye
r1
0

01
8.
m
em

plu
s

02
8.
vib

ro
bo
x

02
9.
wa
ng
4

03
7.
wa
ng
3

02
4.
co
at
er
2

02
7.
pw
t

02
0.
lhr
10

04
2.
lp_

cr
e_
d

04
1.
lp_

cr
e_
b

02
6.
on
et
on
e2

04
4.
lp_

nu
g2
0

02
1.
go
od
wi
n

06
0.
bu
nd
le1

07
9.
ra
il_
79
84
1

03
6.
sh
yy
16
1

02
5.
fin
an
51
2

00
6.
cr
ys
tk0

2
01
1.
af
23
56
0

00
3.
ola

fu
06
5.
e4
0r
20
00

05
8.
bc
ss
tk3

7
04
9.
m
sc
23
05
2

04
8.
m
sc
10
84
8

06
8.
fid
ap
m
11

01
2.
ra
ef
sk
y4

00
4.
bc
ss
tk3

5
06
6.
sm

e3
Da

00
7.
cr
ys
tk0

3
00
1.
de
ns
e

01
7.
rim

04
7.
bc
ss
tk3

2
06
7.
fid
ap
01
1

01
3.
ex
11

04
0.
gu
pt
a1

06
2.
tu
ro
n_
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

 nnz1x2
 nnz2x1
 nnz2x2

2MB

Sp
ee

du
p

 nnz1x2
 nnz2x1
 nnz2x2

1MB

Figure 11: Speedup achieved on Netburst for every multithreading scheme. The first vertical line denotes the effective
cache size for the serial execution and the 1 × 2 multithreading scheme, and the second one denotes the effective
cache size for the 2 × 1 and 2 × 2 multithreading schemes.

Platform

1× 2 2× 1 2× 2

ws < cs ws > cs ws < cs ws > cs ws < cs ws > cs
min max avg min max avg min max avg min max avg min max avg min max avg

Netburst 0.96 1.25 1.14 0.96 1.26 1.10 1.72 2.62 2.11 0.91 1.24 1.02 2.00 3.21 2.48 0.76 1.13 0.83

Woodcrest 1.55 2.67 1.98 1.41 5.05 1.96 1.17 2.19 1.79 1.12 1.46 1.18 2.84 8.02 4.27 1.56 5.50 2.13

Opteron 1.78 3.01 2.22 1.26 1.80 1.61 1.78 3.01 2.20 1.11 2.35 1.53 3.14 6.25 4.52 1.16 3.44 1.81

Table 9: Aggregate speedup results for every architecture and every multithreading scheme.

Platform
1× 2 2× 1 2 × 2

ws < cs ws > cs ws < cs ws > cs ws < cs ws > cs

Netburst 503 351 824 323 965 260

Woodcrest 1612 815 1329 460 2967 849

Opteron 816 435 812 410 1495 485

Table 10: Average performance (MFLOPS) of each multithreading scheme on every platform.

21



00
8.
na
sa
sr
b

01
0.
ct2

0s
tif

00
2.
ra
ef
sk
y3

00
9.
3d
tu
be

01
5.
av
41
09
2

07
5.
m
ar
io0

02
00
5.
ve
nk
at
01

07
3.
lan

gu
ag
e

08
8.
sm

e3
Db

07
0.
he
lm
2d
03

06
9.
gu
pt
a2

06
4.
th
re
ad

05
2.
AS

IC
_3
20
ks

05
5.
sh
ip_

00
1

08
1.
rm
a1
0

08
2.
s3
dk
q4
m
2

08
9.
sto

m
ac
h

06
3.
AS

IC
_6
80
ks

07
7.
nd
6k

04
5.
ap
ac
he
2

09
2.
to
rs
o3

05
7.
AS

IC
_6
80
k

05
3.
Si
87
H7

6
07
1.
ho
od

05
9.
bm

w3
_2

07
8.
pw
tk

09
0.
th
er
m
al2

08
6.
ra
jat
30

07
6.
nd
12
k

09
6.
cr
an
ks
eg
_2

05
1.
Ha

m
rle
3

09
5.
Si
41
Ge

41
H7

2
06
1.
ca
ge
13

09
7.
Ga

41
As
41
H7

2
05
6.
af
_5
_k
10
1

08
4.
af
_s
he
ll9

10
0.
m
sd
oo
r

08
5.
kim

2
09
1.
F1

08
3.
nd
24
k

04
6.
ra
nd
om

10
00
00

07
2.
inl
ine

_1
07
4.
ldo

or
08
0.
ra
jat
31

09
8.
af
_s
he
ll1
0

09
3.
ca
ge
14

09
9.
bo
ne
S1

0

08
7.
fd
if2
02
x2
02
x1
02

05
0.
bo
ne
01
0

09
4.
au
dik

w_
1

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5

Sp
ee

du
p

 

03
9.
jpw

h_
99
1

03
4.
or
sr
eg
_1

03
5.
sa
ylr
4

03
8.
m
cf
e

03
2.
sh
er
m
an
5

03
3.
sh
er
m
an
3

03
0.
lns

p3
93
7

03
1.
lns

_3
93
7

01
9.
ge
m
at
11

04
3.
lp_

fit2
p

02
2.
ba
ye
r0
2

01
6.
or
an
i67

8
01
4.
rd
ist
1

05
4.
Si
Na

02
3.
ba
ye
r1
0

01
8.
m
em

plu
s

02
8.
vib

ro
bo
x

02
9.
wa
ng
4

03
7.
wa
ng
3

02
4.
co
at
er
2

02
7.
pw
t

02
0.
lhr
10

04
2.
lp_

cr
e_
d

04
1.
lp_

cr
e_
b

02
6.
on
et
on
e2

04
4.
lp_

nu
g2
0

02
1.
go
od
wi
n

06
0.
bu
nd
le1

07
9.
ra
il_
79
84
1

03
6.
sh
yy
16
1

02
5.
fin
an
51
2

00
6.
cr
ys
tk0

2
01
1.
af
23
56
0

00
3.
ola

fu
06
5.
e4
0r
20
00

05
8.
bc
ss
tk3

7
04
9.
m
sc
23
05
2

04
8.
m
sc
10
84
8

06
8.
fid
ap
m
11

01
2.
ra
ef
sk
y4

00
4.
bc
ss
tk3

5
06
6.
sm

e3
Da

00
7.
cr
ys
tk0

3
00
1.
de
ns
e

01
7.
rim

04
7.
bc
ss
tk3

2
06
7.
fid
ap
01
1

01
3.
ex
11

04
0.
gu
pt
a1

06
2.
tu
ro
n_
m

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5

8MB4MB

 nnz1x2
 nnz2x1
 nnz2x2

 nnz1x2
 nnz2x1
 nnz2x2

Sp
ee

du
p

 

Figure 12: Speedup achieved on Woodcrest for every multithreading scheme. The first vertical line denotes the
effective cache size for the serial execution and the 1 × 2 multithreading scheme, and the second one denotes the
effective cache size for the 2 × 1 and 2 × 2 multithreading schemes.

access from all the processing elements to the shared bus and memory. In the following, we will focus on the

performance results for each architecture, and we present results from other performance metrics in order to solidify

the aforementioned assumption.

Effect of shared resources on performance: All architectures under consideration have a set of resources that

are shared among processing elements at a certain level, ranging from resources inside the processor to the main

memory1. On Netburst, which is a SMT machine and shares resources inside the processor, SpMxV fails to scale well

with the 1×2 (1.14 speedup) and 2×2 (2.48 speedup) schemes, even when the working set of the algorithm fits in L2-

cache. This is quite predictable, since both threads have the same requirements for computational resources because

they execute the same code. This is an inherent limitation of SMT machines and is also discussed in [3, 14, 16].

The other two platforms, Woodcrest and Opteron, experience linear speedup in almost every case where the

working set of the kernel fits in the cache. On the other hand, speedup decreases dramatically for almost every

scheme when the working set exceeds the L2-cache size. In order to examine whether there is a bus contention

that leads to that performance degradation, we collected results from several events logged by the processors’

performance counters. It should be noted that these events were measured only during the actual execution of the

1Although Opteron is a NUMA machine, no NUMA-aware data allocation is performed in the context of this discussion, thus there
still exists contention on the HyperTransport link of a single core. See Section 4.3.3 for a more detailed consideration of NUMA issues.
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Figure 13: Speedup achieved on Opteron for every multithreading scheme. The vertical lines denote the effective
cache size for the serial execution, the 1 × 2, 2 × 1, and 2 × 2 multithreading schemes, respectively.

kernel—monitoring was turned off during the initialization phase.

At first, we measured the L2-cache misses on every processor. The normalized (over the serial case) results are

depicted in Figure 14. Additionally, we have measured the average request bus latency on Netburst, which is the

average time a memory request should wait on the Input-Output Queue (IOQ); the IOQ is the interface of the

processor to the main memory subsystem. Larger values of this metric indicate that there exist bus contention,

since memory requests should wait longer in order to gain access to the bus. More technically, in order to obtain

this metric, we have divided the metric IOQ active entries, which counts the cycles where at least one request

was pending on IOQ, by the metric IOQ allocations, which is the total number of requests served through the

IOQ. Figure 15 shows the increase over the serial case of average IOQ waiting times for each multithreading scheme

considered.

In order to quantify the bus contention problem on Woodcrest, we have used a different metric; namely, we have

measured the bus utilization. Again in this case, we used primitive performance metrics provided by the processor to

extract the desired metric. More accurately, we have divided the total number of bus cycles where a data transaction

was in progress from whichever processing element (BUS DRDY CLOCKS.ALL AGENTS) by the total number of bus cycles

consumed during the execution of SpMxV (CPU CLK UNHALTED.BUS). This metric is presented in Figure 16. Figure 14
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(a) Netburst .
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(b) Woodcrest
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(c) Opteron.

Figure 14: Increase of total L2-cache misses over the serial case.
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Figure 15: Increase of the total IOQ waiting time of a memory request on Netburst .

clarifies that when the working set of the algorithm is smaller than the effective cache size that a multithreading

scheme “sees”, the L2-cache misses are reduced relative to the serial version of the kernel. In this case as well, all

multithreading schemes on every processor, except for the 1 × 2 and 2 × 2 schemes on Netburst, experience linear

speedup. These schemes fail to scale on Netburst because the two threads have similar instruction mixtures and thus

contend on shared resources inside the processor. The metrics of average bus latency on Netburst and bus utilization

on Woodcrest presented on Figures 15 and 16 exhibit a similar behavior as the L2-cache miss rate.

To better contemplate the relation between the different multithreading schemes and the effective cache size,

as well as their impact on performance, we consider the example of Opteron. When ws < 2MB , the working set

of the algorithm fits in cache for every scheme, and thus, the kernel experiences almost linear speedup. When

2MB < ws < 4MB , the working set does not fit in cache for the 1 × 2 and 2 × 1 schemes, but it still fits for

the 2 × 2 scheme. Consequently, the first two schemes experience an increased amount of cache misses and lower

performance, whereas the 2×2 scheme still achieves linear speedup. Finally, when ws > 4MB , cache misses increase,

and performance drops for every scheme.

All of the above metrics, L2-miss rates, bus latency, and bus utilization, exhibit a similar behavior; when the

matrices are too small to fit in the effective cache of a multithreading scheme, their values are almost equal to the

serial case; for matrices with growing sizes, these metrics increase considerably. This fact along with the either way

memory intensive nature of the algorithm confirms our initial assumption that the major problem of this kernel on
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Figure 16: Increase in bus utilization on Woodcrest .

shared memory machines is the bus contention. It should also be noted here, that the increase in L2-cache miss rate

relevant to the serial case for larger matrices is due to the bus contention as well. Large matrices lead to increased

miss rates, and thus more main memory requests, which press harder the common bus, which in turn cannot service

these requests in time. Consequently, subsequent load instructions also miss. Moreover, the contended bus hinders

the hardware prefetcher from fetching useful data in time.

A special comment should be made for the case where a superlinear speedup is encountered when the working set

is smaller than the effective cache size. Let css be the effective cache size of the serial case, i.e., the physical cache

size of the architecture, and csp the effective cache size of a multithreading scheme. If 0 < ws < css, then neither

the serial nor the multithreaded version experience cache misses, thus an almost linear speedup is encountered. If

css < ws < csp, however, only the serial case experiences misses, since in the multithreaded one the working set

has been split among threads, and thus, fits in the corresponding caches. As a result, this improvement of cache

miss rate offers an extra boost to performance that adds to the already linear speedup, thus leading to superlinear

behavior. Finally, though we did not have any performance metric that could reveal similar contention issues on the

Opteron processor, there seems to be contention in the HyperTransport links, when no NUMA-aware data allocation

is used. We further examine such an allocation scheme in the following section.
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The shared cache as an additional benefit: For matrices whose working set does not fit in L2-cache, it can be

observed from Table 10 that schemes which share the L2-cache provide better speedup than schemes which do not.

For example, on Woodcrest the 1 × 2 scheme achieved much higher, and almost optimal speedup (1.96), than the

2× 1 scheme. Moreover, this scheme achieved a superlinear speedup for the first 20 matrices in Figure 12, for which

a 25%–90% reduction in total cache misses was encountered. For matrices that do not fit in cache, the 1× 2 scheme

achieved a maximum of 25% reduction of L2-cache misses over the 2× 1 scheme. Similar behavior was also observed

on Netburst, although the speedup for both cases when ws > cs were rather small due to the inherent limitations of

the HyperThreading technology.

4.3.3 NUMA architectures

Among the three hardware platforms under consideration, we expected Opteron to provide the best scalability

due to the advantage that the NUMA architecture offers. Nonetheless, Figure 13 and Table 10 do not indicate

any benefit from Opteron’s special architecture, which means that the NUMA characteristics of the architecture are

not utilized effectively. In order to evaluate this assumption, we used the performance counters of the processor

to measure the memory requests served by each memory controller (DRAM accesses event). Indeed, the memory

requests were quite unevenly distributed among the two memory controllers with the one controller serving 698

times more requests than the other for the 1 × 2 scheme and 452 times for the 2 × 2 scheme. That means, that

almost all requests were served from a single controller, which was finally overwhelmed. This is graphically depicted

in Figure 17.

Although the Linux kernel used for experiments supports NUMA architectures and always attempts to allocate

pages on the local memory of each node, it failed to do so for the parallel version of the SpMxV kernel. This was

anticipated, since the data allocation in our implementation happens in the main thread before any other thread

is spawned. Consequently, all the necessary data is allocated on the local memory of a single node. In order to

overcome this problem, we have implemented a “NUMA-aware” allocation of the algorithm’s data structures. We

used the numa alloc onnode() function of the libnuma library, so as to locally allocate the parts of a, row ptr,

col ind, and y structures that are used by each thread. A copy of the input vector x, which is used equally from all

threads, is allocated on every node’s local memory in order to minimize remote memory accesses. It should be noted

here, however, that the function used does not perform a strict allocation, i.e., it attempts to allocate the requested

data on the specified node’s local memory, but it does not guarantee that specific allocation; if a page cannot be

allocated locally, it will be allocated on another node’s memory.

The NUMA-aware data allocation offered a considerable performance improvement (Figure 18), especially for

matrices with large working sets (ws > cs). The average speedup for matrices that do not fit in the effective cache

reached an almost linear 1.96, instead of just 1.53 for the 2× 1 scheme, and an impressive increase from 1.81 to 3.02
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was observed for the 2× 2 scheme. The 1× 2 scheme, on the other hand, experienced a slight decrease from 1.61 to

1.55.

5 Optimization Guidelines

Summarizing the results of the preceding analysis, a number of optimization guidelines can be proposed. These

guidelines, as a result of our extensive experimentation with the SpMxV kernel on modern commodity architectures,

delineate our point of view of the most important performance bottlenecks and how these should be addressed

effectively. The steering performance impediment that should drive any subsequent optimization at the first place

is the memory intensity of the kernel. Secondly, one should take into consideration the computational part of the

kernel. Specifically, we suggest the following for the single-threaded version of the kernel.

1. Reduce as much as possible the working set of the algorithm. Reducing the working set, e.g., by using 32-bit

or 16-bit integers for the indexing structures of the matrix, by applying blocking schemes (as in [5, 12, 20, 26])

that effectively reduce the size of indexing structures, by applying compression (as in [28]), or by other means,

will certainly increase the computation to memory operations ratio, thus alleviating the pressure on memory

bus and give better chance to pending memory requests to be served in time.
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Figure 18: Obtained speedup from a “NUMA-aware” data allocation on Opteron.

2. If you need padding, do it conservatively. Some blocking schemes, which try to effectively reduce the working

set of the algorithm, pad with zeros in order to artificially construct specific patterns which can be effectively

computed. This padding could lead to working set increase and excessive useless computations that will ruin

performance. Thus, the BCSR format used in [5, 12, 26] is expected to be beneficial only in the subset of

matrices that contain many dense sub-blocks

3. Use cache-reuse optimizations for irregular matrices only. One needs to identify matrices with problematic

access on the x vector and apply cache reuse optimizations only to them.

4. Take into consideration the effect of short rows. Some optimization approaches split the matrix into a sum of

submatrices (as in [1,26]). In this case one should take care that the submatrices do not fall into the category

of matrices with short row lengths or even contain a large number of empty rows. Alternatively, one may insert

an additional outer loop in the multiplication kernel (as in [20]). This may also incur significant overheads,

especially in matrices with short rows.

5. Reduce indirect memory referencing. This could be achieved by exploiting regular structures within the matrix

such as full diagonals (as in [1]) or dense subblocks (e.g., BCSR format as in [5, 12, 26]).

29



6. Quantify the effect of hardware prefetching prior to applying software prefetching. Modern architectures provide

intelligent hardware prefetchers that can effectively predict access patterns and bring useful data in cache before

any actual request from the processor. One could additionally utilize the performance monitoring hardware

of the processor and examine whether there exist cache misses for a particular matrix that could be further

reduced. If this is the case, software prefetching can be employed to prefetch data from the input vector x.

As far as the multithreaded version of the kernel is concerned, we suggest the following guidelines.

1. Control, if possible, the way threads access the bus of an SMP machine. It is apparent from the above

experimental analysis that the main bottleneck for SpMxV on a SMP machine is the simultaneous access of all

threads to the common bus. Thus, controlling the way threads are requesting bus resources would be beneficial

to the overall performance. However, this task is not straightforward and involves a number of scheduling issues

for arbitrating the threads’ access to the common bus. This kind of optimization on SMP machines is a matter

of our future research.

2. Exploit any NUMA capabilities of your architecture. The paradigm of Opteronwhich achieved a considerable

performance improvement when a NUMA-aware data allocation scheme was used, is illuminating. The main

advantage of NUMA machines over SMP is that they eliminate the contention on the common bus, thus

exploiting the characteristics of such machine, while computing the memory intensive SpMxV kernel, could

only be beneficial.

3. Favor the use of common cache for shared thread data. This is an implication that is not obvious. The

irregularity of accesses on the input vector x leads to similar, though irregular, access patterns between different

threads. Thus, a thread may benefit from its sibling’s work running on the same core, which sometimes happens

to bring a priori common data in L2-cache.

6 Conclusion – Future work

In this work, we have performed an extensive experimental evaluation of the SpMxV kernel for single and multi-

threaded versions, on a variety of modern commodity architectures. SpMxV is a critical computational kernel and

comprises the core part of a variety of scientific applications. However, this kernel has a set of inherent performance

limitations, which, though discussed to some extent in the literature, were not deeply understood and quantified.

In this paper, we took an in-depth look at the performance bottlenecks of this kernel using a set of metrics ranging

from simple MFLOPS measures to advanced performance metrics obtained from modern processors’ performance

counters. These metrics provided us with a clear insight into the problems reported in the literature, and into

the extent that these problems affect the actual performance of the kernel on modern architectures. As far as the
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multithreaded version is concerned, we examined the effect of the common datapath from the main memory to

the different processing elements (common bus or common memory controller), the effect of the shared cache, and

the benefits that NUMA capabilities can provide to the kernel. The dominating problem of the SpMxV kernel on

modern commodity architectures is the memory bottleneck. Thus, any optimization targeting the kernel should

first focus at minimizing the memory traffic. When the memory traffic problem is attacked, the computational

part of the kernel may become significant, thus, further optimizations targeting the computations could increase

perforamance. Contrary to previous work performed on older platforms, modern microprocessors do not suffer from

the irregular and indirect references to the input vector. However, these characteristics of the algorithm could still

pose a performance bottleneck, but for a certain set of matrices with a close-to-random distribution of non-zero

elements. An additional problem of the kernel, yet not dominant, is the presence of a large amount of very short

rows, in which case the loop overhead will dominate the computational part of the kernel. The experience obtained

from this in-depth experimentation was summarized as a number of optimization guidelines.

As a future work for the single-threaded version of the algorithm, we intend to evaluate existing storage formats

that minimize the working set of the algorithm and propose novel ones that better achieve this goal. Optimization

on the computational part of the kernel, e.g., vectorization, in combination with existing optimization techniques

will also be examined and evaluated. Matters of index or data compression in order to minimize the working set of

the algorithm comprise active research. Inventing and applying successful heuristics in order to select the best, in

terms of SpMxV performance, storage method for a specific matrix is an additional future research aspect.

The multithreaded version of the kernel provides additional research prospects. We intend to evaluate advanced

partitioning schemes and methods of assigning work to processing elements, either statically or dynamically, that

could incorporate concepts such as loop overheads or cache sharing. We will also focus on multicore machines

with more than four hardware threads in order to address the even more challenging problem of bus contention in

that case, and we will investigate multithreading schemes that could arbitrate the way threads are accessing the

common bus so as to maximize its utilization. Finally, we will implement, evaluate, and optimize the kernel on more

sophisticated architectures such as the Cell processor and general-purpose GPUs, as well as consider alternative

programming models, such as streaming programming. Effectively porting the SpMxV kernel to such architectures

and evaluating its behavior is a particularly interesting research topic.
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[8] R. Geus and S. Röllin. Towards a fast parallel sparse matrix-vector multiplication. In Parallel Computing:

Fundamentals and Applications, International Conference ParCo, pages 308–315. Imperial College Press, 1999.

[9] W. Gropp, D. Kaushik, D. Keyes, and B. Smith. Toward realistic performance bounds for implicit cfd codes.

1999.

[10] E. Im. Optimizing the performance of sparse matrix-vector multiplication. PhD thesis, University of California,

Berkeley, May 2000.

[11] E. Im and K. Yelick. Optimizing sparse matrix-vector multiplication on SMPs. In 9th SIAM Conference on

Parallel Processing for Scientific Computing. SIAM, March 1999.

[12] E. Im and K. Yelick. Optimizing sparse matrix computations for register reuse in SPARSITY. Lecture Notes

in Computer Science, 2073:127–136, 2001.

[13] H. Kotakemori, H. Hasegawa, T. Kajiyama, A. Nukada, R. Suda, and A. Nishida. Performance evaluation of

parallel sparse matrix-vector products on SGI Altix3700. In 1st International Workshop on OpenMP (IWOMP),

Eugene, OR, USA, June 2005.

32



[14] J. L. Lo, S. J. Eggers, J. S. Emer, Henry M. Levy, Rebecca L. Stamm, and Dean M. Tullsen. Converting

thread-level parallelism to instruction-level parallelism via simultaneous multithreading. ACM Trans. Comput.

Syst, 15(3):322–354, 1997.

[15] J. Mellor-Crummey and J. Garvin. Optimizing sparse matrix-vector product computations using unroll and

jam. International Journal of High Performance Computing Applications, 18(2):225, 2004.

[16] N. Mitchell, L. Carter, J. Ferrante, and D. Tullsen. Instruction level parallelism vs. thread level parallelism

on simultaneous multi-threading processors. In Proceedings of Supercomputing’99 (CD-ROM), Portland, OR,

November 1999. ACM SIGARCH and IEEE.

[17] G.V. Paolini and G. Radicati di Brozolo. Data structures to vectorize CG algorithms for general sparsity

patterns. BIT Numerical Mathematics, 29(4):703–718, 1989.

[18] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera. Improving the locality of the sparse matrix-vector

product on shared memory multiprocessors. In PDP, pages 66–71. IEEE Computer Society, 2004.

[19] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera. Performance optimization of irregular codes based

on the combination of reordering and blocking techniques. Parallel Computing, 31(8-9):858–876, 2005.

[20] A. Pinar and M. T. Heath. Improving performance of sparse matrix-vector multiplication. In Supercomputing’99,

Portland, OR, November 1999. ACM SIGARCH and IEEE.

[21] Y. Saad. Sparskit: A basic tool kit for sparse matrix computation. Technical report, Center for Supercomputing

Research and Development, University of Illinois at Urbana Champaign, 1990.

[22] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, USA, 2003.

[23] O. Temam and W. Jalby. Characterizing the behavior of sparse algorithms on caches. In Supercomputing’92,

pages 578–587, Minnesota., MN, November 1992. IEEE.

[24] S. Toledo. Improving the memory-system performance of sparse-matrix vector multiplication. IBM Journal of

Research and Development, 41(6):711–725, 1997.

[25] R. Vuduc, J. Demmel, K. Yelick, S. Kamil, R. Nishtala, and B. Lee. Performance optimizations and bounds for

sparse matrix-vector multiply. In Supercomputing, Baltimore, MD, November 2002.

[26] R. W. Vuduc and H. Moon. Fast sparse matrix-vector multiplication by exploiting variable block structure. In

High Performance Computing and Communications, volume 3726 of Lecture Notes in Computer Science, pages

807–816. Springer, 2005.

33



[27] J. White and P. Sadayappan. On improving the performance of sparse matrix-vector multiplication. In 4th

International Conference on High Performance Computing (HiPC ’97), 1997.

[28] J. Willcock and A. Lumsdaine. Accelerating sparse matrix computations via data compression. In ICS ’06:

Proceedings of the 20th annual international conference on Supercomputing, pages 307–316, New York, NY,

USA, 2006. ACM Press.

[29] S. Williams, L. Oilker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of sparse matrix-vector

multiplication on emerging multicore platforms. In Supercomputing’07, Reno, NV, November 2007. (to appear).

34


