An Efficient Code Generation Techniquefor Tiled Iteration Spaces

Georgios Goumas, Maria Athanasaki and Nectarios Koziris
National Technical University of Athens
School of Electrical and Computer Engineering
Computing Systems Laboratory
Zografou Campus, Zografou 15773, Athens, Greece

e-mail: {goumas, maria, nkoziris} @cslab.ece.ntua.gr

Abstract

This paper presents a novel approach for the problem of generating tiled code for nested for-loops,
transformed by a tiling transformation. Tiling or supernode transformation has been widely used to
improve locality in multi-level memory hierarchies, as well as to efficiently execute loops onto parallel
architectures. However, automatic code generation for tiled loops can be a very complex compiler work,
especially when non-rectangular tile shapes and iteration space bounds are concerned. Our method
considerably enhances previous work on rewriting tiled loops, by considering parallelepiped tiles and
arbitrary iteration space shapes. In order to generate tiled code, we first enumerate all tiles containing

points within the iteration space and second sweep all points within each tile. For the first subproblem,

1

we refine upon previous results concer ning the computation of new loop bounds of an iteration space that
has been transformed by a non-unimodular transformation. For the second subproblem, we transform
theinitial parallelepiped tile into a rectangular one, in order to generate efficient code with the aid of a
non-unimodular transformation matrix and its Hermite Normal Form (HNF). Experimental results show
that the proposed method significantly accelerates the compilation process and generates much more

efficient code.

Index Terms— Loop tiling, supernodes, non-unimodular transformations, Fourier-Motzkin elimina-

tion, code generation.

1 Introduction

Tiling or supernode partitioning has been widely used to improve locality in multi-level memory
hierarchies, as well as to efficiently execute loops onto distributed memory architectures. Supernode
partitioning of the iteration space was first proposed by Irigoin and Triolet in [21]. They introduced the
initial model of loop tiling and gave conditions for atiling transformation to be valid. Tiles are required
to be atomic, identical, bounded and their union to span the initial iteration space. They aso pointed
out the two major directions for the application of tiling transformation: data locality and coarse grain
paralelism. Asfar astiling for locality is concerned, extensive theoretical and experimental research
has been conducted and, as a result, many of the proposed techniques have already been incorporated in
research and commercial compilers. In general, previous work on data locality focuses on the combina-
tion of tiling with a sequence of unimodular |oop transformations (permutation, reversal, skewing etc.),
in order to better exploit cache reuse [25], [36].

When executing nested loops on paralel architectures, the key issue in loop partitioning to different

2

processors is to mitigate communication overhead by efficiently controlling the computation to commu-
nication ratio. In distributed memory machines, explicit message passing incurs extratime overhead due
to message startup latencies and data transfer delays. In order to eliminate the communication overhead,
Shang [29], Hollander [10] and others, have presented methods for dividing the iteration space into in-
dependent sets of iterations, which are assigned to different processors. If the rank of the dependence
vector matrix isny < n, the n-dimensional loop can always be transformed to have amaximum of n—n
outermost DOALL loops [37]. However, in many cases, independent partitioning of theiteration spaceis
not feasible, thus data exchanges between processors impose additional communication delays. When
fine grain paralelism is concerned, several methods have been proposed to group together neighboring
chains of iterations [24], [30], while preserving the optimal hyperplane schedule[11], [31], [35].

When tiling to force coarse-grain parallelism, neighboring iteration points are grouped together to
build a larger computation node, which is executed by a processor. Tiles have much larger granular-
ity than single iterations, thus reducing synchronization points and alleviating overall communication
overhead. Data exchanges are grouped and performed within a single message for each neighboring
processor, before and after each atomic tile execution. In this case, scientific research focuses on deter-
mining efficient scheduling schemes [15], [16], optimal tile sizes[5], [16], [40] and optimal tile shapes.
All three above mentioned factors (scheduling scheme, tile size and tile shape) greatly affect the over-
al completion time of atiled algorithm. For example, small tile sizes provide more parallelism, but
cause more frequent communication, while large tile sizes reduce parallelism, but also reduce the com-
munication overhead. On the other hand, overlapping scheduling schemes can significantly reduce the
overal completion time of atiled iteration space by allowing simultaneous computation and commu-

nication phases [15], [32]. In this paper, we are mainly interested in the effect of the tile shape on the

performance of atiled algorithm and thus, we will proceed with a more detailed discussion of related
work.

There are two main reasons why one should choose between tile shapes. The first reason is that
different tile shapes cause different communication volumes per tile. In this case, researchers have
tried to define and calculate the communication-minimal tile shape. In their paper, Ramanujam and
Sadayappan [28] gave alinear programming formulation for the problem of finding optimal tile shapes
that minimize communication. Boulet et al. in [7] and Xuein [39] used a communication function that
has to be minimized by linear programming approaches as well. They showed that the communication-
minimal tile shape is equivalent to the shape of the algorithm’stiling cone. More importantly, the tile
shape aso greatly affectsthe overall completion time of an algorithm. In[9] and [18] the authors present
analytical expressions of the idle time of a processor for 2-dimensional tiled spaces. Thisidle timeis
either the time a processor is waiting for data from another processor, or the time spent by a processor
at abarrier waiting for other processors to accomplish their tasks. It is shown that the idle time depends
on the rise - a parameter that relates the shape of the tile to the shape of the iteration space. Hodzic
and Shang in [16] discussed the effect of the tile shape and size on the overall completion time of an
algorithm, taking into account the iteration space bounds. In [17], they proved that the scheduling-
optimal tile shape, i.e. the one that leads to the minimum execution time, is derived from the algorithm’s
tiling cone. Hogstedt et a. in [19], extend their work from [18] to more deeply nested loops and also
affirm that the vectors forming the basic tile shape should be taken from the surface of the tiling cone.
This meansthat if we properly scale n vectors taken from the surface of the tiling cone of an algorithm,
according to the bounds of the iteration space, we can simultaneously obtain scheduling-optimal and

communication-minimal tiling. Quite recently, Hogstedt et al. have proven in [20], that some moretile

shapes may be scheduling-optimal, according to the iteration space shape.

Despite this extensive research on the effect of the tile shape on the performance of atiled algorithm,
research or commercial paralelizing compilers do not use general paraleepiped (arbitrary) tiling [1],
[3],[8],[13], [33]. Ingeneral, the parallelizing compiler community has been pessimistic about applying
such transformations, due to the additional overhead to generate code for arbitrarily tiled iteration spaces
and, more importantly, due to the additional overhead incorporated to the generated code itself (extra ex-
pressions are needed in theloop boundaries, in order to access iteration pointswithin the non-rectangular
tiles). However, the problem of generating code for arbitrarily tiled iteration spaces, was tackled by An-
court and Irigoin in [4]. In their paper, the problem of calculating the exact transformed loop boundsis
formulated as a large system of linear inequalities. These inequalities are formed first to calculate the
exact bounds for every tile execution and second to access all iterations inside every tile. The authors
use the Fourier-Motzkin elimination method to transform the above systems of inequalities so that they
can be used in order to calculate the bounds of a nested loop. Unfortunately, due to the fact that the
generated systems are unnecessarily large, and that the Fourier-Motzkin method is extremely complex,
the proposed method results in being quite inefficient, in terms of both compilation time and quality of
generated code. This means that the overhead to access the iteration points within non-rectangular tiles
outweighstheir theoretical gain.

In this paper, we present an efficient method to generate code for tiled iteration spaces, considering
both non-rectangular tiles and non-rectangular iteration spaces. Our goal isto simplify the compilation
process and to produce as efficient code as possible. We divide the main problem into the subproblems
of enumerating thetiles of the iteration space and of sweeping the internal points of every tile (asin [4]).

For the first problem, we continue previous work concerning the computation of loop bounds which tra-

verse an iteration space that has been transformed by a non-unimodular transformation [26], [27]. Tiling
was used as an exampl e to compute |oop bounds, but the method proposed fails to enumerate all tile ori-
ginsexactly. We adjust this method to access all tiles. Asfar as sweeping the internal points of every tile
is concerned, we propose a novel method which uses the properties of non-unimodular transformations.
This method is based on the observation that tiles are identical and that large computational overhead
arises when non-rectangular tiles are involved. To handle this fact, we first transform the parallel epiped
(non-rectangular) tile (Tile Iteration Space - T'1.S) into arectangular one, then sweep the derived Trans-
formed Tile Iteration Space (17'1S) and use the inverse transformation in order to access the original
points. Theresults are adjusted in order to sweep the internal points of all tiles, taking into consideration
the original iteration space bounds. We, thus, exploit the regularity of rectangle shaped tiles to produce
more efficient code. In both subproblems, the resulting systems of inequalities are eliminated using
Fourier-Motzkin elimination. Compared to the method presented by Ancourt and Irigoin in [4], our
method outperforms in terms of efficiency. Experimental results show that the procedure of generating
tiled code is greatly accelerated, since the derived systems of inequalities in our case are smaller. In
addition, the generated code is much more efficient, since it contains less expressions and avoids heavy
loop bound cal culations imposed by non-rectangular tiles.

Note that the parallelization process of an arbitrarily tiled algorithm involves two separate tasks. the
generation of the sequential tiled code and the parallelization of this code. This paper dealswith the first
task. Our goal isto generate efficient sequential tiled code with alow compilation time. However, since
our method also simplifies the parallelization process, we will discuss some issues of the latter task as
well. Nevertheless, parallelization details are beyond the scope of thispaper. Xuein [34] presentsacom-

plete approach to parallelize tiled iteration spaces (sequential tiled code generation and parallelization)

but his method is restricted to rectangular tiles.

The rest of the paper is organized as follows: Basic terminology used throughout the paper and def-
initions from linear algebra are introduced in Section 2. We present tiling or supernode transformation
in Section 3. Our method for generating tiled code is presented in detail in Section 4. In Section 5 we
discuss some parallelization aspects of our generated code. In Section 6 we compare our method with
the one presented in [4] and present experimental results for both compilation and run times. Finally, in

Section 7 we conclude by summarizing our results.

2 Preliminaries
2.1 TheModd of the Algorithms- Notation

In this paper, we consider algorithms with perfectly nested FOR-loops. That is, our algorithms are of
the form:
FOR (j1 =l; 71 <ur)
FOR (j2 =1l2; J2 <us)
Loop Body
ENDFOR
ENDFOR
ENDFOR
where [; and u; are rationa-valued parameters, [, and u, (kK = 2,...,n) are of the form: [, =
maz ([fir (i, - Je=1)1 5 [fer(rs -, Ge=1) 1) and wg = man(lgra (G, - -5 dr=1)]5 -+ Lowr (1,
.y Jk—1)]), where fi; and g;; are affine functions. Therefore, we are not only dealing with rectangular

iteration spaces, but also with more general convex spaces, with the only assumption that the iteration

space is defined as the bisection of afinite number of semi-spaces of the n-dimensional space Z".

Throughout this paper, the following notationis used: N isthe set of naturals, 7 isthe set of integers
and n isthe number of nested FOR-loops of the algorithm. J™ C Z™ isthe set of indexes, or theiteration
space of an algorithm: J" = {j(j1, .., Ju)lis € Z AN 1l; < j; < w;, 1 < i < n}. Each pointin this
n-dimensional integer space is a distinct instantiation of the loop body. The iteration space J" can also
be described with a system of linear inequalities. An inequality of this system expresses a boundary
surface of theiteration space. Thus, J" can be equivalently defined as: J" = {j € Z"|Bj < 5}. Matrix
B and vector b can be easily derived from the affine functions [, and u,, and vice versa. If A isamatrix,
we denote a;; the matrix element in the :-th row and j-th column and a, the k-th row or column of A,

according to the context.
2.2 Linear Algebra Concepts

We present some basic linear algebra concepts which are used in the following sections:
Definition 1 A square matrix A isunimodular if it isintegral and its determinant equalsto +1.

Unimodular transformations have a very useful property: their inverse transformation is integral as
well. On the other hand the inverse of a non-unimodular matrix is not integral, which causes the trans-
formed space to have “holes’. We call holes the integer points of the transformed space that have no

integer anti-image in the original space.

Definition 2 Let A be an m x n integer matrix. We call the set £L(A4) = {y|ly = Az Az € Z"} the

lattice that is generated by the columns of A.

Consequently, we can define the holes of a non-unimodular transformation as follows: if 7" is a non-
unimodular transformation, we call holes the points j' € Z", such that T-';’ ¢ Z". On the contrary,

8

It IS

|. e o0 e e 00

o e 00 ER LR)

| T=

|. o o0 01 oo 00

e e e e, [T e e

I j] jll

- i actual point hole

it 2 ol
loooo e 0 O @ O @ O
loooo T_'21J e 0O e0e®0 @®O0
|oooo #1101 e C e 0 @0 @0
® e 0 0, |[T)2 O eCeC 80

jlb

Figure 1. Unimodular and Non-Unimodular Transformations

we call actual points of a non-unimodular transformation 7" the points j' € Z", for which it holds
T4 € Z" & j' € L(T). Figure 1 shows the image of an iteration space after the application of a
unimodular and a non-unimodular transformation. Holes are depicted with white dots and actual points

with black ones.

Theorem 1 If T'isam x n integer matrix, and C' isan n x n unimodular matrix, then £(T') = L(TC).

Proof: Givenin[26].

Definition 3 We say that a square, non-singular matrix H = [lﬁ, cee h;] € R"™isin Column Hermite
Normal Form (HNF) iff A islower triangular (h;; # 0 implies: > j) andfor all ¢ > 7,0 < h;; < hy;

(the diagonal isthe greatest element in the row and all entries are positive.)

Theorem 2 If T'isam x n integer matrix of full row rank, then there existsan n x n unimodular matrix
C such that TC' = [T0] and T isin Hermite Normal Form.

Proof: Givenin[26].

Every integer matrix with full row rank has a unique Hermite Normal Form. By Theorem 1, we
conclude that £(T') = £(T') which means that an integer matrix of full row rank and its HNF produce

the same lattice. This property isvery useful for code generation of tiled spaces.

9

2.3 Fourier-Motzkin Elimination M ethod

The Fourier-Motzkin elimination method (FME) can be used to convert asystem of linear inequalities
Ax < aintoaform, in which the lower and upper bounds of each element z; of the vector 7 isexpressed
intermsof theelements x4, . .., z; 1 only. Thisfact isvery important when using a nested loop, in order
to traverse an iteration space J" defined by a system of inequalities. In this case, the bounds of index
ji Of the nested loop must be expressed in terms of the £ — 1 outer indexes only. This means that FME
method can convert a system describing a general iteration space into a form suitable for use in nested
loops.

After applying FME, the eliminated system consists of avery large number of inequalities describing
the bounds of each variable x;, but some of them are not necessary for the calculation of z;’s bounds.
The unnecessary inequalities must be eliminated to simplify the resulting system. In order to remove
the redundant inequalities, two methods have been proposed: the “Ad-Hoc simplification method” and
the “Exact simplification method”. A full description of the Fourier-Motzkin elimination method, the
Ad-Hoc simplification and the Exact ssimplification is presented in [6].

If theinitial system of inequalities consists of £ inequalities with n variables, then the complexity of

on

the FME algorithm can be expressed by the form: Complezity = O() ~ O((%£)%") [22]. FME

92(n+1) _o

isan extremely complex method, since it depends doubly exponentially on the number of loopsinvolved.

3 Tiling (Supernode) Transformation

In atiling transformation, the iteration space .J" is partitioned into identical n-dimensional paral-
lelepiped areas (tiles or supernodes), formed by n independent families of parallel hyperplanes. Tiling

transformation is defined by the n-dimensional square matrix H. Each row vector of H is perpendic-

10

ular to one family of hyperplanes forming the tiles. Dually, tiling transformation can be defined by n
linearly independent vectors, which are the sides of thetiles. Similar to matrix H, matrix P containsthe
side-vectors of atile as column vectors. It holds P = H —*. Formally, tiling transformation is defined as
follows:
r:Z" — 7% r(j) = L] ;
j— H | Hj)

where | Hj| identifies the coordinates of the tile that iteration point j € J" is mapped to and j —
H~'|Hj| gives the coordinates of ; within that tile relative to the tile origin. Thus, the initial n-
dimensional iteration space .J" istransformed to a 2n-dimensional one, consisting of the n-dimensional

space of tilesand the n-dimensional space of indexeswithin tiles. The following spaces are derived from

atiling transformation H, when applied to an iteration space J".

1. The Tile Iteration Space TIS(H) = {j € Z"|0 < |Hj]| < 1}, which contains al points that

belong to the tile starting at the axes origins.

2. The Tile Space J°(J", H) = {j°|5° = |Hj|,j € J"}, which contains the images of all points

j € J™ according to tiling transformation.

3. The Tile Origin Space TOS(J°, H™') = {j € Z"|j = H~'5%, 75 € J%}, which contains the

origins of tilesin the original space.

Following the above, it holds: J" Ly 78 and 75 25 TOS. For simplicity reasons, we will refer to
TIS(H)asTIS, J(J", H) asJ® and TOS(J®, H ') asTOS. Notethat al pointsof J" that belong
to the same tile, are mapped to the same point of .J°. Note also that 770 is not necessarily a subset of

J", since there may exist tile origins which do not belong to the original iteration space J", but some

11

iterations within these tiles do belong to .J". The following example analyzes the properties of each of

the spaces defined above.

Example 1 Consider the following nested loop:
FOR (j1=0; ji1 <39)
FOR (j2=0; 72 <29)
Alji,jo] = Alj1 — 1,52 — 2] + Alj1 — 3,52 — 1]
ENDFOR
ENDFOR

The corresponding iteration space J? is. J2 = {(j1,72)[0 < j1 < 39,0 < j» < 29}. Let us apply a tiling

i L 6 4
transformation defined by matrix H — > 19 or, equivalently, by P = , which is legal [28]
_1 3 2 8
20 20

(since HD > 0) and has both communication and scheduling-optimal shape ([7], [16], [17], [18], [39]), for
the specific problem. Then, as shown in Figure 2a, T'1S contains the points {(0,0), (1,1), (1,2), (2,1), (2,2),
(2,3), (2,4), ..., (7,5), (7,6), (7,7), (7,8), (8,7), (8,8), (89), (9,9)}. In addition, as shown in Figure 2c,
J" istransformed by matrix H to the Tile Space J° = {(—3,3), (—3,4), (=2,1), (-2,2), (—2,3), (—=2,4), ...,
(6,-2), (6,-1), (6,0), (7,—2), (7,—1)}. In the sequel, as shown by the grey dots in Figure 2b, the Tile Space
J* istransformed by matrix P to TOS = {(—6,18), (—2,26), (—8,4), (—4,12), (0,20), (4,28), ..., (28, —4),

(32, —4), (36,12), (34,—2), (38,6)}. O

Points belonging to the same tile with tile origin j, € TOS, satisfy the system of inequalities 0 <
H(j — jo) < 1. In order to deal with integer inequalities, we define ¢ to be the smallest integer such

that gH is an integer matrix. Thus, we can rewrite the above system of inequalities as follows. 0 <

o o gH | =0T
gH(j — jo) < g 0<gH(j— jo) < (9 —1). Wedenote S = and 5 =

—gH 0
Equivalently, the above system becomes: S(j — jo) < §. Notethat if jo, = 0, S(j — jo) < §issatisfied

only by pointsinT'1S.

12

I Tile Iteration Space (TIS) Iteration Space (J")
: : jzil
(-2.4) (2.3)
o o (-3,4) (1,3) 5.2)
o o] (03) @.2)
£ o o . (-1.3) p (3.2) y
o o o (-2,3) y 2.2)
o o o (-3.3 (1.2) (5,1)
o o o 02) (1)
o o o . (-1.2) (3.1)
o o o 2.2) (2.1) (6,0}
o o o (1.1) (5.0
- |
I y 0.1} (4.0) y
(@))t 1.1) (3.0) .
D (2.0) (6:-1) -4
d
(1,0) (5-1)
-] -
=} Tile Space (4) ‘ ©0) -1
(-1,0 (3.-1) (7.-2)
L] L]
o o o . » (2.-1) (6,-2) -
o o o o . o (1.-1) (5.-2) . i,
L I] . . (0.-1) (4.-2)
- - [- -~ " I=S ™ s
’- e o o 0 0 0 o N v tile origins
L] L] L] L]
(c) (b)
Figure 2. Example Spaces
Example 2 In the loop of Example 1, the set of inequalities describing the iteration space .7 is:
1 0 39
0 1[5 29 | N | | 5w
< . Using the same tiling transformation matrix H =
. 1 3
-1 0 J2 0 2 20
0 -1

system of inequalities S(j5 — jo)

4 =2
-1 3
-4 2

1 -3

jl - le

j2 - j02

19

19

13

0
< §describing atileis (since g = 20):

, the

4 Code Generation Methods

In this section, we elaborate on generating tiled code that will traverse an iteration space J" trans-
formed by atiling transformation. We call this code sequential tiled code. By applying tiling to J ",
we obtain the Tile Space .J°, the Tile Iteration Space T'1S and the Tile Origin Space TOS. In Sec-
tion 3, it was shown that tiling transformation isa Z® — Z?" transformation, which means that a
point j € J" istransformed into a tuple of n-dimensional factors (5., j,), where j, identifies the tile
that the original point belongs to (j, € J°) and j, identifies the coordinates of the point relevant to
the tile origin (j, € T1S). The sequentia tiled code reorders the execution of indexes enforced by
the original nested loop, resulting in an execution order described by the following scheme: For (EV-
ERY tile IN Tile Space J°) TRAVERSE THE POINTS IN ITS INTERIOR.According to the
above, the sequential tiled code consists of a 2n-dimensional nested loop. The n outermost loops tra-
verse the Tile Space J°, using indexes t7,t5,...,t>, and the n innermost loops traverse the points
within the tile defined by ¢7,¢5,...,t5, using indexes j;, 5, ..., j.. We denote I¢, u; the lower and
upper bounds of index ¢, respectively. Similarly, we denote [/, v}, the lower and upper bounds of index
Je- In @l cases, lower bounds L, are of the form: L, = max(lxp, k1, ...) and upper bounds Uy, of
the form: Uy, = min(ug, uk,1, - ..), where l;, ;, uy ; are affine functions of the outermost indexes. By
caculating factors 17, ..., 15, uf, ..., ud, I},...,I! ad u),...,u!, we can traverse the tiled iteration

space as described before.

4.1 PreviousWork

The problem of generating sequential tiled code can be separated into two subproblems: traversing

the Tile Space J° and sweeping the internal points of every tile or, in our context, finding lower and

14

upper bounds for the n outermost indexes t{, 5, ...,t> and finding lower and upper bounds for the
n innermost indexes ji, j5, ..., 7. Ancourt and Irigoin in [4] dealt with these subproblems, by con-
structing an appropriate set of inequalities for each case. In order to traverse the Tile Space J*, the
first system is constructed by merging the inequalities representing the original iteration space and the
inequalities representing a tile. Recall from Section 3 that a point j € J™ belonging to atile with tile

origin jo € TOS, satisfies the set of inequalities: S(j — jy) < 5. Since j, = Pj°, the preceding system

—gI gH j°
of inequalities becomes: < §. Recall also that apoint j € J" satisfies the
gl —gH J

system of inequalities Bj < b. Combini ng these systems, we obtain the final system of inequalities:

0 B
5 b
—gl gH <)
j 5
gl —gH

In order to traverse the interna points of every tile, the above set of inequalitiesisrewritten equivalently:

B b
gH i< | (9-DT+g55 |- 2
—gH 0— gj°

where vector j° givesthe coordinates of thetile to be traversed. Ancourt and Irigoin propose the appli-
cation of FME method to the above systems in order to obtain proper formulas for the lower and upper

bounds of the 2n-dimensional loop that will traverse the tiled space.

15

4.2 Our Method

We will now introduce an alternative method to generate tiled code. The concept of dividing the main
problem into the subproblems of traversing the Tile Space J° and sweeping the internal points of every
tile, is preserved here as well. However, we refine complexity by applying certain transformations to
both subproblems, before constructing the final sets of inequalities and applying FME method to them.
That is, we reduce the inequalities involved in the derived systems and, consequently, reduce the FME
method steps (compilation time reduction) and the number of expressions required to calcul ate the loop

bounds (run time reduction).

4.2.1 Enumerating theTiles

The subproblem of traversing the Tile Space J° has been considered by many authors as an example
of applying the non-unimodular tiling transformation to the original iteration space. More specificaly,
Ramanujam in [26] and [27] applied the non-unimodular tiling transformation to the set of inequalities

Bj < b describing the iteration space, asfollows; Bj < b= BH-'Hj < b =

BPj% < 3)

Here again, the application of FME method to the derived system of inequalitiesis proposed, in order to
obtain closed form formulasfor tilebounds (7, ..., 15 and u?, ..., us.
Unfortunately, the previous approach fails to enumerate tiles exactly. This is because the system of

inequalitiesin (3) is satisfied by pointsin the Tile Space J*, whose tile origins belong to .J*. However,

as stated in Section 3, there exist some pointsin 7’0 .S that do not belong to J ™. Although these points do

16

not satisfy the preceding systems of inequalities, they must be traversed aswell. In Figure 2b, tilesin the
lower boundaries, such as (-3,3), (-2,1), (4,-2) and others, are not scanned by this method, because their
originsdo not belong to the original iteration space J". Consequently, a modification isrequired, so that
FME method can scan all tiles correctly. As shown in Figure 4, what is needed is a proper reduction of
the lower bounds and/or a proper increase of the upper bounds of our space, in order to include al tile
origins. Lemma 1 determines how much we must expand space bounds, in order to include al points of

TOS.

Lemmal If we apply tiling transformation P to an iteration space J", whose bounds are expressed by

the system of inequalities Bj < b, then for all tileorigins j, € TOS, it holds:

where ' is determined by the expression:
1N o
Vo=t + =N "G i=1,...0n (5)

where 3; is the i-th row of matrix B, p;. is the r-th column of matrix P and (3;p;)~ = maz(—fip;., 0).

Proof: Given in Appendix

If we work with the Tile Space J° and take into account that j, = P;°, we equivalently get the system

of inequalities:

BPj® <V (6)

17

L~
-+
B,
Iy
-
piB,
- redundant LA
-py tile \
A (-3,4) /(-2.4} ©3 /3 23 4.2)
[—* 1.3 F @32) &4
. -
) 2.3) (2.2)
{-3.3: (1.2) 5.1)
- ¥ i0.2) r 4,1}y
P8 1 d ¢
_’A-) ti_i_) (1.2} (3.1) J
2.2
pﬂ@1 l-22) (2.1) y
{1,1) (50) /(6.0
. .
| 1) 4.0)
.
-+ i-1.1) 3.0
=4 21) |
TP 2 2.0) (6,-1)
1 'ﬁz . 0 . 51 (741)
©0) s 1)
. .
7 (1.0 (3.-1) 7.-2)
B¢ - d
- P (2.1} (6.-2)
- P; 2 (11} (52} iy
0.1} {4.-2) redundant
-+ o tile
Py
; - .
l - h
-+
PoB;
ﬁj -+ . .
Py ek Figure 4. Example 3: expansion of bounds
£] -
=Py piB;

Figure 3. Expanding bounds to include all tile

origins

Geometrically, the term added to each element of b expresses a paralel shift of the corresponding
bound of theinitial space. In Figure 3, we present an example of our method. Each row EZ of matrix B
expresses a vector vertical to the corresponding bound of the iteration space with its direction outwards.
The equation of this boundary surface is 5@’ = b;. A parallel shift of this surface by a vector zj is
expressed by the equation @(f —Tp) = b & Bi# = b; + Biay. As shown in Figure 3, we shift a
boundary surface by vector —p,., iff the tile edge-vector p, forms an angle greater than 90° with vector
Ei (as the angles between the vectors@ and py, 51 and ps, 53 and p1, 53 and ps, 54 and p; of Figure 3),
or, equivalently, iff p;@ < 0. This fact can be expressed as follows: if the dot product of p;., one of

the columns of the matrix P, and 5, arow of B, is negative, then we subtract this dot product from the

18

constant b;. Equivalently, in formula (5) we add the term (B_;-p_,:) ~ tothe constant b, for al vectorsp,. The
multiplying factor % expresses the fact that atile is a semiopen hyperparallelepiped and thus we need
not contain in the tile space the tiles which just touch the initial iteration space. Note, however, that this
expansion of bounds may include some redundant tiles, whose origins belong to the extended space, but
their internal points remain outside the original iteration space. These tiles will be accessed, but their
internal points will not be swept, asit will be shown next, thus imposing little computation overhead in

the execution of the sequential tiled code.

Example 3 We will enumerate the tiles generated by the tiling transformation described in Examples 1 and 2.

Following our approach, we should construct the system of inequalities in (6) making use of the expression

T
in (5). Expression (5) in our case givesl;’ =139 29 95 95 and thus, the system in (6) becomes:
6 4 39
2 8 it 29
< . The expansion of bounds for this example is shown in Figure 4. A rough
—6 —4 35 9.5
-2 =8 9.5

application of FME multiplies row 1 by 2 and adds it to row 4. Thus, we get 105 < 87.5 = 57 < 8. Smilarly,

we get j7 > —4. Consequently, a loop that enumerates the origins of tilesin our case has the form:

FOR (j¥ =—4; j<8)
. —9.5—657 —9.5—-257 . , 39—657 29257
FOR (j5 =max([—==], [—5)); j5 <min([=F2-|, | =<2]))

ENDFOR
ENDFOR

Note that tiles (8, —3) and (—4, 4) are redundant (Fig. 4). O

19

4.2.2 Scanning the pointswithin atile

As far as scanning the internal points of a tile is concerned, we present a new method based on the
use of a non-unimodular tranformation. Our god is to traverse the 775 and then slide the points of
TIS properly, so as to scan al points of J™. In order to achieve this, we transform the 775 to a
rectangular space, called the Transformed Tile Iteration Space (TT1S). We traverse the TT1S with
an n-dimensional nested loop and then transform the indexes of the loop so as to return to the proper
pointsof the 7’1 S. In other words, we are searching for atransformation pair (P’, H'): TT1S RN
and T1S % TTIS (Fig. 5). Intuitively, we demand P’ to be parallel to tile sides, that is, the column
vectors of P’ to be paralel to the column vectors of P. Thisis equivalent to the row vectors of H’
being paralel to the row vectors of H. In addition to this, we demand the lattice of H' to be an integer
space for loop indexes to be ableto traverseit. Formally, we must find an n-dimensional transformation
H': H = VH,whereV isann x n diagonal matrix and L(H') C Z". The following Lemma proves

that the second requirement is satisfied if and only if H' isintegral.

Transformed Tile Iteration

Space (TTIS)
-
2
Tile Iteration Space 0Oe000O0O®O0O0
(TIS) cooceo00c00Ce®
A e00008000
b2 co0Oe0O0O0CO@®O0
== 0000O@®@000O0
- e '
_‘—.‘..? H 0Ce00DO0OO0C@O0O0
I / —_— ccoeococooe
/;jee 00 o
reeeey e0000@000
K co0e0O0O0CO0O@O0
;oo ey oOoO0DO®@0O0O0O
b 000 0,
/ -
‘eeees ceo00DO0OO0C@O0O0
;....; P‘ oOooCcO@®@OODOOW®
Yoo e 0000000
! - R ocoeocooo0eo0
» 0C000D®@0000
Iy oOe00ODOC@®O0OO
cooeo000O0C® o= =1
©e0000@®000
oOoCO®O0OO0OCOOO0OO

Figure 6. Steps and initial offsets in TT1S de-
rived from matrix H'

Figure 5. Traverse the TIS with a non-

unimodular transformation

20

Lemma?2 j' = Aj € Z"Vj € Z" iff Aisintegral.

Proof: Given in Appendix

Let us construct V' in the following way: Every diagonal element vy, isthe smallest integer such that
verhy iSintegral, where by, isthe k-th row of matrix H. Thus, both requirementsfor H' are satisfied. It
isobviousthat H' isanon-unimodular transformation. This means that the Transformed Tile Iteration
Space contains holes. In Figure 5, the holesin the TT'1.S are depicted with white dots, while the actual
points are depicted with black ones. So, in order to traversethe T'1.S, we have to scan al actual points of
the 771 S and then transform them back using matrix P’. We can apply any of the methods presented in
[26], [27], [38], [25], [12] to traversethe T'T'1S. However, we will avoid the application of FME method
by taking advantage of the tile shape regularity.

We use an n-dimensional nested loop with iterationsindexed by j'(j1, 75, - - -, j;,), in order to traverse
the actual points of the 777S. The bounds of the indexes j, are easily determined: it holds 0 <
Jr < vk — 1. However, the increment step ¢, of an index j;. is not necessarily 1. In addition to this,
if index j;, isincremented by ¢, all indexes j; .+, ..., j, should be initialized at certain offset values
A(k+1)k» - - - » Gnk- SUPPOSE that for a certain index vector j', it holds P'j" € Z". The first question is
how much to increment the innermost index j,, so that the next swept point is also integral. Formally,

T
we search the minimum ¢, € Z suchthat P"| 5+ 5 = 5 4 ¢ € Z". After determining

2
cn, the next step is to calculate the increment step of index j! , so that the next swept point is also
integral. In this casg, it is possible that index j, should also be incremented by an offset a,q, 1) :
0 < @pp-1) < cu. Inthe general case of index j, we need to determine ci, a(k41)k, - - -, Gnx SUCH
T

that: P’ Jooee ek Jh Ak -- T ank € Z". Every index j; hask — 1 different

incremental offsets ay;, depending on each of the increment steps ¢; of the k£ — 1 outer indexes j;.

21

These offsetsare ayy, . . ., ar—1). The following Lemma proves that increment steps c;, and offsets ay,
(k=1...nand[=1...k — 1), are directly obtained from the Hermite Normal Form of matrix H’,

denoted H'.

Lemma 3 If H' isthe column HNF of H' and J'(J1, 75, -+, Jr) istheindex vector used to traverse the
actual points of £L(H'), then the increment step (stride) for index j;. iS¢, = 1. and the incremental
offsetsare ay, :ﬁ’kl,(k: l...nandl=1...k—1).

Proof: Given in Appendix

According to the above analysis, the point that will be traversed using the next instantiation of indexes
is calculated from the current instantiation, since steps and incremental offsets are added to the current
indexes. Specia care is taken so that every time the index vector j' = (51, ..., J;) isto be modified, the
new index vector ;' is calculated as a sum of current ;' and a multiple of a column-vector of H'. Thus,
assuming that the current instantiation ;' € L(H'), we ensure that the next point to be traversed remains
in C(H').

Theorem 3 The following n-dimensional nested loop traversesall points ;' € TT1S

FOR(jiZO,...,j;LZO; jigvu—l; ji—F:h’ll,...,j;L—{—:h’nl)
FOR (jn+ = [=2] % Blna, ... g+ = [Z2] % hlag; jh <y —1; jh+=hls, ... ji+ =hpo)

h'22

FOR(j;fi_: [%1 *i;lnn/' .77,1 S'Unn_]-/' .7711+:i;lnn)

ENDFOR

ENDFOR
ENDFOR

Proof: It can be easily derived from Lemmas 2 and 3.

We now need to adjust the above loop, which sweeps al pointsin TT1S, in order to traverse the
internal points of any tilein J°. If ;' € TTIS is the point that is derived from the indexes of the

22

former loop and j° € J* isthe tile, whose internal points j € J" we want to traverse, it will hold:
j = Pj% + P'j' = j, + P'j', jo € TOS, where j, = Pj° isthetileorigin, and P’j’ € TIS isthe
corresponding to j' pointin7'1.S. Special attention also needs to be paid so that the points traversed do
not overcome the original space boundaries. Aswe have mentioned before, apoint j € J" satisfies the

following set of inequalities: Bj < b. Replacing j by the above equation we have: B(jy + P'j’) < b=

BP'j' < b— Bj (7)

By applying FME method to the preceding set of inequalities, we obtain proper expressions for j', so
that we do not cross the original space boundaries. In thisway, the problem of redundant tiles that arose

in the previous section is also faced, since no computation is performed in these tiles.

Example 4 Let us consider the same algorithm as in the previous examples. We will now sweep the internal

2 -1 10 0
points of a tile. If we follow our method, we have the following: H' = andV = . Ac-
-1 3 0 20
8§ 4 . 10 2 -1 11
cordingly, P' = . TheHermite Normal Formof matrix H' isH' = =
: 2 2 5 -1 3 12

and thus, as shown in Figure 6, ¢; = ﬁ’n =1,c = }?22 =5, a9 = ;7/21 — 2. Consequently, the code that
traverses the indexes inside every internal tile, according to Theorem 3, is:

joo \ _ |6 4 i\

Jo2 2 8 is)7
FOR (j;=0,j5=0; ji <9; ji+=Lj+=2)

FOR (jy+=[=21%5; jy <19; ji+=35)

. . 3 1 -/
WAl Joq 5 5 J1
. = . + : . ;
(5)=Ce)+lt 1](3)
Aljr, g2l = Aljr — 1,j2 — 2] + A[j1 — 3,52 — 1]
ENDFOR
ENDFOR

In order to exactly scan the internal of boundary tiles, we construct matrix [BP|b|B] =

23

1 0 78 2 -1

3 1 3 1

2139 1 0 213 1 0

229 0 1 220 0 1

FME method on this matrix gives: . Conse-

3 1

-2 -+ 0 -1 0 -1 029 -2 1

1 2 3 1

-1 -2 0 0 -1 -2 -1 0 -1 o0
-2 0 0 -1

5 5

quently, the code that traverses the indexes inside tiles, which cut the iteration space bounds, is:
(e)= 5] (5)

jo> 2 8]\)’
Iby =max(0, —29 — 2jo, + jo,) 7
uby =min(9 /* vi1-1 */,78 = 2jo, + Jo,) s
FOR (ji =1bi,j5 =1b1 %2; ji <wbi; ji+=17j5+=2)

1b2 =max(0, =3} — 5o, [L5721) ;
uby =min(19 /* vay-1 */,—3j} — 5jo, + 195, | A0t)
FOR (jy+=["252]%5; jb <uby; jy+=5)

. . 3 1 -/
J1 Jo, 5 B il
. = . + . ;
(5)=Cl)+t 1](3)
Aljr, g2l = Aljr — 1,j2 — 2] + A[j1 — 3,52 — 1]
ENDFOR
ENDFOR O

5 Parallelization Aspects

In this section, we briefly refer to some paralelization aspects of the sequential tiled code. Recall
that the parallelization of an arbitrarily tiled algorithm involves two separate tasks: first, the generation
of the sequentia tiled code and, second, the parallelization of this code. This paper focuses on the
first task. Parallelization, in the sequel, can be separated in sub-tasks such as iteration distribution, data
distribution and message-passing code generation. Our approach of accessing the internal of the tiles
with the Hermite Normal Form of matrix H' can also provide significant benefits to the parallelization

process, such as better data placement and thus, more efficient memory usage and ease of array data

24

addressing schemes.

When executing an algorithm on a distributed memory machine, the original data space of the algo-
rithm is distributed to the local memories of the processing nodes. The local data space of each node
isin general a non-rectangular subset of the original data space, even if rectangular tiling is applied
[2]. However, applying the proposed transformations, each processor can iterate over a rectangular lo-
cal iteration space (TTIS) and access rectangular data spaces as well. In this way, each processor can
allocate exactly the required amount of memory. Rectangular data spaces aso allow for straightforward
addressing schemes of array elements and thus a direct way of sweeping data by the generated code.
Another very important benefit in parallelization is the convenient determination of the communication
sets. Each communication set contains the communication points, i.e. the points that are written in the
local memory of a processor and are needed by another. The communication points have the following
property: if we add one dependence vector to them, then the resulting point liesin the exterior of thetile.
Figure 7 shows the communication points and sets when determined inthe TISand inthe TTIS. d; and
d, are the dependences of the original algorithm, while d’; and d, are the transformed dependencesin the
TTIS. Itisobvious that, when working with the rectangular 77°1S, the communication sets are much
more easily determined since they are rectangular as well. Details about the parallelization process only

(iteration distribution, data distribution, message-passing code generation etc.) can be found in [14].

6 Comparison — Experimental Results

We have implemented both our method (in the sequel denoted as RI - Reduced Inequalities) and the
one described in [4] by Ancourt and Irigoin (denoted as Al), as a software tool which automatically

generatestiled C code using any tiling transformation P. In this section, we compare Al and Rl methods

25

Transformed Tile Iteration
Space (TTIS)

D Communication set

@ Communication point

Tile Iteration Space
(TIS)

Figure 7. Determining Communication Sets in the TIS and TTIS

both in terms of compilation time and generated code efficiency. We generated several random 2 — D
and 3 — D problems and measured the following: compilation time, row operations performed by FME
and run time of the generated code. In the sequel, we applied both Al and Rl methods to three red
applications. SOR, Jacobi and ADI integration. We aso applied the inequalities of Al method to the
Omega calculator [23] and generated code for all problems. We then measured the compilation time and
run time obtained by Omega (the results are denoted as Al-Omega) and compared them with the ones
obtained by Al (using our tool) and RI. Table 1 showsthe iteration spaces used as examplesin2— D and
3 — D problems. We applied severa tiling transformations, in which the non-zero elements of thetiling
matrices were randomly generated. In 2 — D spaces we applied three different tiling transformations
(P1, Py, P3) varying from the diagonal matrix P; to more complex ones. In 3 — D spaces we applied
seven different tiling transformations (P;, . . . , Pp), again here starting from the diagonal P, and adding
non-zero elements (P;, contains no zero element). We performed our experimentson aPlll @ 800MHz
processor with 128MB of RAM. The operating system is Linux with kernel 2.4.18. The generated

tiled code was compiled using gcc v.2.95.4 with the -O3 optimization flag. We also experimented with

26

lower optimization levels, where the execution times were slower, but the relative resultsfor all methods

remained the same.
Table 1. Example Iteration Spaces
i1 12 i3

lower | upper lower upper lower upper

bound | bound bound bound bound bound # of iterations
Spacel || —1999 | 4999 —1999 4999 - - 48986001
Space2 || —1999 | 4999 —1999 4999 + 2i, - - 69983001
Space3 || —4999 | 4999 | —4999 + 3iy | 4999 + 2i; - - 99980001
Spaced 0 399 0 399 0 399 64000000
Spaceb 0 399 0 399 + iy 0 399 95920000
Spaceb 0 399 —iy 399 + iy 0 399 127840000
Space? -99 149 —99 — i, 149 + iy -99 149 + 2i5 22904099
Space8 0 399 —i 399 + iy i1 79 + 2i- 117635018
Space9 -99 149 —99 — i, 149 + iy —99 — iy | 149 + i1 + 2is 31129399
Spacel0 0 59 —i1 59 + iy —i1 — 3ia | 59+ i1 + 2io 1994462

6.1 Row Operations- Compilation Time

Tables 2,3 summarize the results (row operations and compilation time) from the compilations of all
iteration spaces tiled with al candidate tiling matrices. We present here the number of row operations
and compilation times of one matrix (P, for 2 — Ds and P; for 3 — Ds) for all iteration spaces and the

average values of each matrix for all iteration spaces.

6.2 RunTime

In order to evaluate the run time overhead due to tiling, we executed all tiled codes of the previous
problems and measured their run time. We also executed the original untiled serial code for each prob-

lem. We define the Tiling Overhead Factor - TOF as the fraction of the run time of the sequential tiled

: - . Run time of tial Tiled Cod :
code to the run time of the untiled code: TOF = “”R'l’];et?mi‘]ﬂ“gr‘n'” i code— - Note that, the loop body in

each case isa simple array assignment statement and, thus, the run time measured is dominated by the

27

Table 3. FME Row Operations and Compilation
Time (ms) for 3D Algorithms

_] [Al [RIJAl-Omega| Al | RI |
Table 2. FME Row Operations and Compilation | Row Operations (P;) || Compilation Time (P;) |
Time (ms) for 2D Algorithms Spaced | 264 | 28 || 235.55 1.33 0.49
Spaceb 578 34 367.78 6.0 0.52
| [Al | Rl _[[Al-Omega| Al | Rl | ["gpaces | 508 | 42 || 1,188.72 124 0.55
| Row Operations (P») || Compilation Time (P,) | [Space7 | 1411 | 38 || 911.38 40.78 | 0.54
Spacel | 37 10 22.56 0.28 | 0.27 Space8 1522 | 42 2,099.32 51.31 0.56
Space2 | 33 10 21.56 0.28 | 0.27 Space9 379 38 370.47 2.61 0.55
Space3 | 34 10 22.78 0.29 | 0.26 SpacelO | 419 42 527.3 3.08 0.56
[Avg. Row Operations [| Avg. Compilation Time | | Avg. Row Operations || Avg. Compilation Time |
P 31 10 18.88 0.27 | 0.26 P, 88 22 51.87 0.51 0.43
P, 35 10 22.30 0.28 | 0.27 Ps 105 22 67.2 0.58 0.44
Py 99 12 37.63 0.36 | 0.3 Py 265 38 276.14 1.67 0.53
Py 726 38 814.36 15.62 0.54
Py 5382 | 36 2,901.14 1,746.64 0.53
Py 3767 | 35 2,921.1 781.04 0.53
Py 59563 | 41 2,531.58 | 356,508.91 | 0.56

time to compute the loop bounds. Sincethe array size was small (20 x 20) and thetile sizeswere not cho-
sen to be optimal for cache locality, the sequential tiled code does not present any improvement due to
the exploitation of the memory hierarchy. Thus, TOF indicates the overhead imposed by the evaluation
of the new loop bounds, due to tiling. If TOF istoo large, it will aggravate the speedup obtained when
we parallelize nested FOR-loops using tiling. Table 4 summarizes the tiling overhead factors. Again
here we present the TOFs of P, and P; applied to all iteration spaces and the average TOFs of all Ps
across al iteration spaces. Figure 8 shows the TOF of 3 — D problems as a function of the number of

non-zero elementsin tiling matrix P.

6.3 Real Applications

In our last set of experiments, we applied Al and RI methods to tile three rea applications. SOR,

Jacobi, and ADI integration. For thefirst two problems, there is a skewed and an unskewed version, and

28

16

14

12

10

Table 4. Tiling Overhead Factors (TOF) for 2 — D and 3 — D Problems

| | Al-Omega | Al | RI | | Al-Omega | Al | RI |

| TOF (2D) (Ps) [Avg. TOF (2D) |
Spacel 6.27 4.55 | 1.61 Py 2.85 1.03 | 1.31
Space2 6.12 4.62 | 1.63 || Ps 6.62 4.78 | 1.69
Space3 7.45 5.16 | 1.82 || P3 8.23 6.41 | 3.75

| TOF (3D) (P;) I Avg. TOF (3D) |
Spaced 15.50 9.86 | 4.65 || Py 1.99 1.26 | 1.17
Spaceb 16.09 10.05 | 5.14 || Ps 4.96 3.44 | 1.88
Space6 16.20 10.10 | 5.29 || Ps 9.55 7.16 | 4.62
Space7 12.67 9.04 | 4.80 || Py 13.90 9.47 | 5.17
Space8 12.72 8.92 | 4.65 || Pg 11.24 9.14 | 3.60
Space9 11.80 8.95 | 4.84 || Py 10.74 8.78 | 5.51
Spacel0 12.29 9.38 | 6.84 || Pio 13.62 11.07 | 5.62

Avg. TOF in 3D problems

I using dmega ce{lculator J—
using Al method -->-- _| 3,5
/\ using RI method A&~—=~ 3|
25 |
w2 m Omega
o (@]
15 @Al
1 oRI
=S T 05 |
’ 0
g SOR SOR Jacobi Jacobi ADI
<= skew ed skewed
3 4 5 6 7 8 9 10

of non-zero elements in P
Figure 9. Tiling Overhead Factors for real appli-

Figure 8. Avg. Tiling Overhead Factors for 3— D cations

problems

for each version there are four (communication and scheduling) optimal matrices as described in [17]

and [39]. Table 5 summarizes the row operations, compilation times and TOFs for each case. Figure 9

shows the TOFs obtained by each method, in each case.

6.4 Overall Evaluation Comments

As far as compilation time is concerned, RI method clearly outperforms Al method. This is due to

the fact that RI method feeds FME with the system in (6), which consists of 2n inequalities with n

29

Table 5. Performance for Real Applications

| I | Row Operations || Compilation Time (ms) || TOF |
| [[Al | RI_[Al-Omega]| Al | RI | Al-Omega| Al | RI |
P 99 22 53.03 0.50 0.42 1.47 1.20 | 1.05
SOR P, 107 22 50.27 0.53 0.42 1.50 1.21 | 1.01
Py 118 22 49.01 0.57 0.42 1.75 1.63 | 1.05
Py 165 40 90.04 0.77 0.5 1.80 1.78 | 1.30
Py 99 22 42.09 0.53 0.41 1.59 1.29 | 1.06
SOR P, 107 22 40.60 0.53 0.42 1.60 1.29 | 1.06
skewed || P3 118 22 57.9 0.57 0.42 1.90 1.73 | 1.12
P, 165 40 91.97 0.77 0.51 1.95 1.86 | 1.34
Py 645 28 346.99 5.3 0.46 2.08 1.91 | 1.57
Jacobi Py 645 28 347.96 5.26 0.47 2.09 1.92 | 1.60
P 800 28 362.5 8.86 0.47 2.06 1.90 | 1.56
P, || 3207 46 1,353.55 | 194.88 | 0.53 5.98 5.09 | 2.10
P 645 28 251.885 4.93 0.48 1.99 1.88 | 1.44
Jacobi Py 645 28 248.27 4.98 0.47 1.98 1.87 | 1.46
skewed || P3 800 28 229.34 8.19 0.48 2.02 1.89 | 1.45
Py 691 28 238.82 5.95 0.47 2.01 1.88 | 1.43
[ADI [P] 180 | 28 [4742 | 085 [046] 146 | 1.47] 1.07 |

variables, while Al method feeds FME with the system in (1), which consists of 4n inequalities with
2n variables. Recall that FME is a doubly exponential algorithm and thus the reduction in its input size
imposed by our method causes significant reduction in the method’s execution steps, as clearly seen by
the number of row operations. Note also that the exact simplification method of FME was not applied
in the presented experiments, since the gain in run time by the application of the method was inadequate
to justify the vast increase in compilation times, especialy in the case of Al method (3% average and
10% maximum gain in run time). In particular, while Rl compilation times remained in the order of
milliseconds when using exact simplification, Al compilation times increased dramatically (reached the
order of an hour). This meansthat we can practically apply exact simplificationto RI, in order to further
improve the efficiency of the generated code.

Despite the reduction in compilation timeimposed by RI, it seemsthat both Al and Al-Omegaperform

well in2— D and 3 — D problems (compilation times are |ess than one second). However, in problems of

30

larger dimensions, both Al and Al-Omega present several problems. We executed anumber of randomly
generated 4 — D algorithms and observed that, at first, the compilation time of Al becomes impractical
(severa hoursor evendays). Moreimportantly, Al failed to generate code for amost half of the problems
dueto lack of memory. Note that FME is also doubly exponential in space, soin several 4 — D problems
even 1GB of virtual memory was not sufficient to cover the needs of the method. On the other hand,
Al-Omega also faced some problems with memory space (to asmaller extent than Al) but here again, in
almost half of the problems, the system rose an overflow exception. Apparently, after alarge number of
row operationsin 4 — D algorithms, some coefficients exceeded the system’s MAXINT. In all cases RI
method succeeded in generating code, within some seconds in the worst case.

As far as run time is concerned, RI also exhibits a significant improvement in performance in all
problems. In particular, as shownin Figure 8, as the number of non-zero elementsin matrix P increases,
the improvement of Rl method becomes much more obvious. This means that Rl method performs very
well in complex problems where the tiling matrices contain many non-zero elements and the iteration
spaces are non-rectangular. In addition, as shown in Figure 9, RI’s performance is nearly optimal in
simpler algorithms such as SOR, Jacobi and ADI, since the TOF in these cases is very close to one.
Thus, RI performs very well in easy problems and sustains a remarkably good performance even when
the tiling transformations and the shape of the iteration spaces become increasingly complex.

The improvement in the quality of the generated code caused by RI, is due to the fact that, although
the code to enumerate thetilesis essentially similar in Al and RI, the code to traverse the internal points
of thetilesis completely different. Our tool makes a distinction between boundary and internal tiles and
generates different code to scan the internal points for both Al and RI (asin Example 4). In the case of

boundary tiles, RI method results in fewer inequalities for the bounds of the Tile Space. Consequently,

31

fewer bound calculations are executed during run time. In the case of internal tiles, which are the vast

majority in most problems, the code of RI consists of aloop with constant bounds (0 < j! < v; — 1 for

i = 1,...,n), while the code of Al includes a loop whose bounds are derived from the application of
gH | (g— DT _ .
FME to the system (J—Jo) < . Itisclear that the calculation of loop bounds
—gH 0

in the first case is much more efficient. Finally, note that the enumeration of some redundant tiles does
not impose any significant overhead, since the number of redundant tiles is negligible. The same holds
for the non-unimodular transformation used to access the internal points of the tiles. In this case, the
additional operations due to the transformation are simple integer multiplications, while operations on
extra variables are integer additions and assignment statements which are all efficiently executed by
modern processors and optimized by any back-end compiler like gcc.

Summarizing, the compilation time reduction is due to the method used to enumerate the tiles of the
Tile Space, while the run time reduction is mainly due to the transformation of a non-rectangular tileto

arectangular one.

7 Conclusions

In this paper, we proposed a novel approach for the problem of generating code for tiled nested |oops.
Our method is applied to general parallelepiped tiles and non-rectangular space boundaries as well. In
order to generate code efficiently, we divided the original problem into the subproblems of enumerating
the tiles and sweeping the points inside every tile. In the first case, we extended previous work on
non-unimodular transformations in order to precisely traverse al tile origins. In the second case, we
proposed the use of a non-unimodular transformation in order to transform the tile iteration space into a

hyper-rectangle. Experimental results show that our method outperforms previouswork in terms of both

32

compile and run times, since it constructs smaller systems of inequalities and traverses the points within

non-rectangular tiles asif they were rectangular.

Appendix

Proof of Lemma 1: We suppose that the point 5 € J" belongsto thetilewith origin j,. Then, 5 can be expressed
as the sum of j, and alinear combination of the column-vectors of the tiling matrix P: j = 5 + >, Aipp. In
addition, as referred in Section 3, the following equality holds: 0 < gH (j — j0) < (g - 1). Thei-th row of this
inequality can be rewritten as follows:0 < k;(j — jo) < s where h; is the i-th row-vector of matrix H = P~
Therefore: 0 < h; Y1y \ipi < 45+, AsP = H~" it holds that h;p; = 1 and hiji; = 0 if i # 1. Consequently, the
last form can be rewritten as follows. 0 <) < % fordli=1,...,n.

For each j € J" the system of inequalities Bj = b holds. The k-th row of this system can be written as

follows: B?J < bi. We can rewrite the last inequality in terms of the corresponding tile origin as follows:

Brlo + 1 i) < b = Brio < by — Br(X0, \iry)

= Brjo < b — Y Ni(Brpy))

=1

In addition, as we proved above, it holds0 <) < -"le foradli=1,...,n. If multiplied byﬁ;p*i this inequality
gives.

3) If Brpi > 0: Niffpi > 0

b) If By < 0: \ifBepi > L% By

According to the definitions of the symbol (8,5;)~ = maz(—B,p;,0), the previous inequalities can in every
case be rewritten as follows: \;Bxp; > —%(6}@)* = —\Bep; < 9771(579197)*. If added for i = 1,...,n, this

inequality gives: — Y1, Aifipi < £+ 300 (Bipi)

33

Therefore, from the last form and the inequality (8), we conclude that 85 jo < by, + gle Z?ZI(B;@»)*. Thus,
for each tile with origin jy, which has at least one point in theinitial iteration space, it holdsthat Bj < v, where
the vector ' is constructed so asits k-th element is given by the form: §, = by, + = S (Bepi) O
Proof of Lemma 2: If A isintegral itisclear that 7 € Z"Vj € Z™. Supposethat ;' € Z"Vj € Z". We shall
prove that A isintegral. Without lack of generality we select j = 4, where 4, is the k-th unitary vector, 4, =
(ug1, ..., ukn), ugk = L,ug; = 0,7 # k. Then, according to the above, Ady, = [>°7 | arjug,, Y 1y G2ik,, - - -
S angug,)T = [ark, agk, - - . ank]’ € Z™. Thisholdsfor al 4,k = 1...n, thus A isintegral. O
Proof of Lemma 3: It holds £(H') = L(H'). Thus, 0 € £(H') and the columns of H' belong to £(H').
Suppose ¥ € Z”/ﬁwith the following properties: z; = 0fori < kand 0 < ; < Wy for k < i < n. It suffices
to provethat # ¢ {0, hy,} = # ¢ L(H'). Supposethat # € £(H'), which meansthat 3j € Z" : H'j =% H'is
alower triangular non-negative matrix and thus it holds: z; = H’Hjl = 0= j; =0. Similarly, j; = 0fori < k.
In the sequél, it holds. z;, = f?’kkjk. According to the above, it holds: 0 < z;, = f?’kkjk < f?’kk =0<j <1
Inaddition, 0 < zj41 = E,(k+1)kjk + g’(k+1)(k+1)jk+1 < gl(kJrl)k- Since ﬁ’(k+1)(k+1) > ﬁl(k+1)k = Jk+1 = 0.
Similarly, j; = 0 for i > k + 1. Consequently either Z = 0, or Z is the k — th column of H', which is a

contradiction. O

Acknowledgments

We wish to express our profound gratitude to the anonymous reviewers for their suggestions, which

considerably increased the clarity and quality of the original manuscript.

References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

V. Adve and J. Mellor-Crummey. Advanced Code Generation for High Performance Fortran. In
Languages, Compilation Techniques and Run Time Systems for Scalable Parallel Systems, chapter

18, Lecture Notes in Computer Science Series. Springer-Verlag, 1997.

A.Agarwal, D. Kranz, and V. Natargjan. Automatic Partitioning of Parallel Loopsand Data Arrays
for Distributed Shared-Memory Multiprocessors. | EEE Trans. on Parallel and Distributed Systems,

6(9):943-962, 1995.

S. P Amarasinghe and M. S. Lam. Communication Optimization and Code Generation for Dis-
tributed Memory Machines. In Proceedings of the ACM S GPLAN Conference on Programming

Language Design and Implementation, Albuquerque, NM, Jun 1993.

C. Ancourt and F. Irigoin. Scanning Polyhedrawith DO Loops. In Proceedings of the Third ACM
S GPLAN Symposium on Principles & Practice of Parallel Programming (PPoPP), pages 39-50,

Williamsburg, VA, Apr 1991.

R. Andonov, P. Caland, S. Niar, S. Rgopadhye, and N. Yanev. First Steps Towards Optimal
Oblique Tile Sizing. In 8th International Workshop on Compilers for Parallel Computers, pages

351-366, Aussois, Jan 2000.

A.J.C. Bik and H.A.G. Wijshoff. Implementation of Fourier-Motzkin Elimination. In First Annual

Conference of the ASCI, pages 377-386, The Netherlands, 1995.

P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate tiling? INTEGRATION, The VLS

Jounal, 17:33-51, 1994.

35

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. In Proceedings of the

Third Workshop on Compilers for Parallel Computers, pages 121-160, Jul 1992.

F. Desprez, J. Dongarra, and Y. Robert. Determining the Idle Time of a Tiling: New Results.

Journal of Information Science and Engineering, 14:167-190, Mar 1997.

E. D’Hollander. Partitioning and Labeling of Loops by Unimodular Transformations. |EEE Trans.

on Parallel and Distributed Systems, 3(4):465-476, Jul 1992.

|. Drossitis, G. Goumas, N. Koziris, G. Papakonstantinou, and P. Tsanakas. Evaluation of Loop
Grouping Methods based on Orthogonal Projection Spaces. In Proceedings of the International

Conference on Parallel Processing, pages 469476, Toronto, Canada, Aug 2000.

A. Fernandez, J. Llaberia, and M. Vaero. Loop Transformations Using Nonunimodular Matrices.

|EEE Trans. on Parallel and Distributed Systems, 6(8):832—-840, Aug 1995.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran-D Lan-
guage Specification. Technical Report TR-91-170, Dept. of Computer Science, Rice University,

Dec 1991.

G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Compiling Tiled Iteration Spaces for
Clusters. In Proceedings of the 2002 | EEE International Conference on Cluster Computing, pages

360-369, Chicago, Illinois, Sep 2002.

G. Goumas, A. Sotiropoulos, and N. Koziris. Minimizing Completion Time for Loop Tiling with
Computation and Communication Overlapping. In Proceedings of IEEE Int’'| Parallel and Dis-

tributed Processing Symposium (IPDPS 01), San Francisco, Apr 2001.

36

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

E. Hodzic and W. Shang. On Supernode Transformation with Minimized Total Running Time.

|EEE Trans. on Parallel and Distributed Systems, 9(5):417-428, May 1998.

E. Hodzic and W. Shang. On Time Optimal Supernode Shape. 1EEE Trans. on Parallel and

Distributed Systems, 13(12):1220-1233, Dec 2002.

K Hogstedt, L. Carter, and J. Ferrante. Determining the Idle Time of a Tiling. In Principles of

Programming Languages (POPL), pages 319-323, Jan 1997.

K. Hogstedt, L. Carter, and J. Ferrante. Selecting Tile Shape for Minimal Execution time. In ACM

Symposium on Parallel Algorithms and Architectures, pages 201-211, 1999.

K Hogstedt, L. Carter, and J. Ferrante. On the Parallel Execution Time of Tiled Loops. |IEEE

Trans. on Parallel and Distributed Systems, 14(3):307-321, Mar 2003.

F. Irigoin and R. Triolet. Supernode Partitioning. In Proceedings of the 15th Ann. ACM SIGACT-
S GPLAN Symp. Principles of Programming Languages, pages 319-329, San Diego, Cadlifornia,

Jan 1988.

M. Jimenez. Multilevel Tiling for Non-Rectangular Iteration Spaces. PhD thesis, Universitat

Politecnica de Catalunia, 1999.

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The Omega Library
Interface Guide. Technical Report CS-TR-3445, CS Dept., Univ. of Maryland, College Park, Mar

1995.

Chung-TaKing, W-H Chou, and L. Ni. Pipelined Data-Parallel Algorithms: Part 11 Design. |EEE
Trans. on Parallel and Distributed Systems, 2(4):430-439, Oct 1991.

37

[25] W. Li. Compiling for NUMA Parallel Machines. PhD thesis, Cornell Univ., Ithaca, New York,

1993.

[26] J. Ramanujam. Non-Unimodular Loop Transformations of Nested Loops. In Supercomputing 92,

pages 214-223, Minneapolis, Nov 1992.

[27] J. Ramanujam. Beyond Unimodular Transformations. Journal of Supercomputing, 9(4):365-389,

Oct 1995.

[28] J. Ramanujam and P. Sadayappan. Tiling Multidimensional Iteration Spaces for Multicomputers.

[29]

[30]

[31]

[32]

[33]

Journal of Parallel and Distributed Computing, 16:108-120, 1992.

W. Shang and J.A.B. Fortes. Independent Partitioning of Algorithmswith Uniform Dependencies.

|EEE Trans. on Computers, 41(2):190-206, Feb 1992.

J.-P. Sheu and T.-S. Chen. Partitioning and Mapping Nested Loopsfor Linear Array Multicomput-

ers. Journal of Supercomputing, 9:183-202, 1995.

J.-P. Sheu and T.-H. Tai. Partitioning and Mapping Nested Loops on Multiprocessor Systems.

|EEE Trans. on Parallel and Distributed Systems, 2(4):430-439, Oct 1991.

A. Sotiropoulos, G. Tsoukalas, and N. Koziris. Enhancing the Performance of Tiled Loop Ex-
ecution onto Clusters using Memory Mapped Network Interfaces and Pipelined Schedules. In
Proceedings of the 2002 Workshop on Communication Architecture for Clusters (CAC 02), Int’l

Parallel and Distributed Processing Symposium (IPDPS 02), Fort Lauderdale, Florida, Apr 2002.

E. Su, A. Lain, S. Ramaswamy, D. J. Palermo, E. W. Hodges, and P. Banerjee. Advanced Com-
pilation Techniques in the PARADIGM Compiler for Distributed Memory Multicomputers. In

38

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Proceedings of the ACM International Conference on Supercomputing (ICS), Madrid, Spain, Jul

1995.

P. Tang and J. Xue. Generating Efficient Tiled Code for Distributed Memory Machines. Parallel

Computing, 26(11):1369-1410, 2000.

P. Tsanakas, N. Koziris, and G. Papakonstantinou. Chain Grouping: A Method for Partitioning
L oops onto Mesh-Connected Processor Arrays. |EEE Trans. on Parallel and Distributed Systems,

11(9):941-955, Sep 2000.

M. Wolf and M. Lam. A Data Locality Optimizing Algorithm. In ACM SIGPLAN’ 91 Conference

on Programming Language Design and Implementation (PLDI), Toronto, Ontario, Jun 1991.

M. Wolf and M. Lam. A Loop Transformation Theory and an Algorithm to Maximize Parallelism.

|EEE Trans. on Parallel and Distributed Systems, 2(4):452-471, Oct 1991.

J. Xue. Automatic Non-unimodular Loop Transformationsfor Massive Parallelism. Parallel Com-

puting, 20(5):711-728, 1994.

J. Xue. Communication-Minimal Tiling of Uniform Dependence Loops. Journal of Parallel and

Distributed Computing, 42(1):42-59, 1997.

J. Xue and W.Cai. Time-minimal Tiling when Rise is Larger than Zero. Parallel Computing,

28(6):915-939, 2002.

39

Biographies

A(»_ h ' Georgios Goumas received his Diplomain Electrical and Computer Engineering from
the National Technical University of Athensin 1999. Heis currently a PhD candidate in the School of
Electrical and Computer Engineering, National Technical University of Athens. His research interests
include Parallel Processing (Parallelizing Compilers, Automatic Loop Partitioning), Parallel Architec-
tures, High Speed Networking and Operating Systems. Georgios Goumas is a recipient of the IEEE

IPDPS 2001 best paper award for the paper “Minimising Completion Time for Loop Tiling with Com-

putation and Communication Overlapping”. He is a student member of the IEEE.

21 Maria Athanasaki received her Diplomain Electrical and Computer Engineering from
the National Technical University of Athensin 2001. She is currently a PhD candidate in the School
of Electrical and Computer Engineering, National Technical University of Athens. Her research inter-
ests include Parallel and Distributed Systems, Parallelizing Compilers, Dependence Analysis and High

Performance Numerical Applications. She is a student member of the |EEE.

Nectarios Koziris received his Diploma in Electrical Engineering from the Nationa

Technical University of Athens (NTUA) and his Ph.D. in Computer Engineering from NTUA (1997).

40

He joined the Computer Science Department, School of Electrical and Computer Engineering at the
National Technical University of Athensin 1998, where he currently serves as an Assistant Professor.
His research interests include Computer Architecture, Parallel Processing, Parallel Architectures (OS
and Compiler Support, Loop Compilation Techniques, Automatic Algorithm Mapping and Partitioning)
and Communication Architectures for Clusters. He has published more than 50 research papersin in-
ternational refereed journals and in the proceedings of international conferences and workshops. He has
also published two Greek textbooks “Mapping Algorithmsinto Parallel Processing Architectures’, and
“Computer Architecture and Operating Systems’. Nectarios Kozirisis a recipient of the IEEE IPDPS
2001 best paper award for the paper “Minimising Completion Time for Loop Tiling with Computation
and Communication Overlapping” (held at San Francisco, California). He is reviewer in International
Journals and Conferences. He served as a Program Committee member in HiPC-2002 and CACO3 (or-
ganized with IPDPS03) Conferences, Program Committee co-Chair for both the ACM SAC 2003 and
2004 Symposiums on Applied Computing-Special Track on Parallel, Distributed Systems and Network-
ing. He conducted research in several EU and national Research Programmes. He is a member of IEEE
Computer Society, member of IEEE-CS TCPP and TCCA (Technical Committees on Parallel Processing

and Computer Architecture), ACM and organized the Greek |EEE Chapter Computer Society.

41

