
NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
COMPUTING SYSTEMS LABORATORY

Non-linear memory layout transformations and data
prefetching techniques to exploit locality of

references for modern microprocessor architectures
with multilayered memory hierarchies

PHD THESIS

Evangelia G. Athanasaki

Athens, Greece, July 2006

ÅÈÍÉÊÏ ÌÅÔÓÏÂÉÏ ÐÏËÕÔÅ×ÍÅÉÏ
Ó×ÏËÇ ÇËÅÊÔÑÏËÏÃÙÍ ÌÇ×ÁÍÉÊÙÍ ÊÁÉ ÌÇ×ÁÍÉÊÙÍ ÕÐÏËÏÃÉÓÔÙÍ
ÔÏÌÅÁÓ ÔÅ×ÍÏËÏÃÉÁÓ ÐËÇÑÏÖÏÑÉÊÇÓ ÊÁÉ ÕÐÏËÏÃÉÓÔÙÍ
ÅÑÃÁÓÔÇÑÉÏ ÕÐÏËÏÃÉÓÔÉÊÙÍ ÓÕÓÔÇÌÁÔÙÍ

ÐÑÁÊÔÉÊÏ ÅÎÅÔÁÓÇÓ ÄÉÄÁÊÔÏÑÉÊÇÓ ÄÉÁÔÑÉÂÇÓ
ôçò

Åõáããåëßáò Ã. ÁèáíáóÜêç
Äéðëùìáôïý÷ïõ Çëåêôñïëüãïõ Ìç÷áíéêïý êáé Ìç÷áíéêïý Õðïëïãéóôþí Å.Ì.Ð. (2002)

Ìç-Ãñáììéêïß Ìåôáó÷çìáôéóìïß ÁðïèÞêåõóçò êáé Ôå÷íéêÝò
Ðñþéìçò ÁíÜêëçóçò ÄåäïìÝíùí ãéá ôçí Áîéïðïßçóç ôçò
Ôïðéêüôçôáò ÁíáöïñÜò óå Óýã÷ñïíåò Áñ÷éôåêôïíéêÝò

Ìéêñïåðåîåñãáóôþí ìå Ðïëõåðßðåäåò Éåñáñ÷ßåò Ìíçìþí

ÔñéìåëÞò ÓõìâïõëåõôéêÞ åðéôñïðÞ: Ðáíáãéþôçò ÔóáíÜêáò, åðéâëÝðùí
Ãåþñãéïò Ðáðáêùíóôáíôßíïõ
ÍåêôÜñéïò Êïæýñçò

Åãêñßèçêå áðü ôçí åðôáìåëÞ åîåôáóôéêÞ åðéôñïðÞ ôçí ..

.........................
Ð. ÔóáíÜêáò Ã. Ðáðáêùíóôáíôßíïõ Í. Êïæýñçò
ÊáèçãçôÞò Å.Ì.Ð. ÊáèçãçôÞò Å.Ì.Ð. Åðßê. ÊáèçãçôÞò Å.Ì.Ð.

.........................
Ô. ÓåëëÞò Á. Ìðßëáò
ÊáèçãçôÞò Å.Ì.Ð. Áíáð. ÊáèçãçôÞò, Ðáíåð. ÊñÞôçò

.........................
Á. ÓôáöõëïðÜôçò Í. Ðáðáóðýñïõ
ÊáèçãçôÞò Å.Ì.Ð. ËÝêôïñáò Å.Ì.Ð.

ÁèÞíá, Éïýëéïò 2006

.................
Evangelia G. Athanasaki
School of Electrical and Computer Engineering, National Technical University of Athens, Greece

Copyright c© Evangelia G. Athanasaki, 2006
All rights reserved

No part of this thesis may be reproduced, stored in retrieval systems, or transmitted in any form
or by any means { electronic, mechanical, photocopying, or otherwise { for pro�t or commercial
advantage. It may be reprinted, stored or distributed for a non-pro�t, educational or research
purpose, given that its source of origin and this notice are retained. Any questions concerning
the use of this thesis for pro�t or commercial advantage should be addressed to the author.
The opinions and conclusions stated in this thesis are expressing the author. They should not
be considered as a pronouncement of the National Technical University of Athens.

Ðåñßëçøç

¸íá áðü ôá âáóéêüôåñá æçôÞìáôá ðïõ Ý÷ïõí íá áíôéìåôùðßóïõí ïé áñ÷éôÝêôïíåò õðïëïãéóôþí

êáé ïé óõããñáöåßò ìåôáãëùôôéóôþí åßíáé ç óõíå÷þò áõîáíüìåíç äéáöïñÜ åðßäïóçò ìåôáîý ôïõ åðå-

îåñãáóôÞ êáé ôçò êýñéáò ìíÞìçò. ÐñïêåéìÝíïõ íá îåðåñáóôåß ôï ðñüâëçìá áõôü ÷ñçóéìïðïéïýíôáé

äéÜöïñïé ìåôáó÷çìáôéóìïß êþäéêá, ìå óôü÷ï ôç ìåßùóç ôïõ áñéèìïý ôùí áóôï÷éþí ìíÞìçò êáé

åðïìÝíùò ôç ìåßùóç ôïõ ìÝóïõ ÷ñüíïõ ðïõ êáèõóôåñïýí ïé åöáñìïãÝò ðåñéìÝíïíôáò ôá äåäï-

ìÝíá íá öôÜóïõí áðü ôçí êýñéá ìíÞìç. Ï ìåôáó÷çìáôéóìüò õðåñêüìâùí ÷ñçóéìïðïéåßôáé åõñÝùò

óôïõò êþäéêåò öùëéáóìÝíùí âñü÷ùí, áíáäéáôÜóóïíôáò ôç óåéñÜ åêôÝëåóçò ôùí åðáíáëÞøåùí, ãéá

ôç âåëôßùóç ôçò ôïðéêüôçôáò ôùí áíáöïñþí óå äåäïìÝíá ìíÞìçò.

Ç äéáôñéâÞ áõôÞ óõìâÜëëåé óôçí ðåñáéôÝñù áîéïðïßçóç ôçò ôïðéêüôçôáò áíáöïñÜò ãéá éåñáñ÷ßåò

ìíçìþí, âåëôéóôïðïéþíôáò ôïí ôñüðï áíáöïñÜò åðáíáëçðôéêþí êùäßêùí óôç ìíÞìç. Åðé÷åéñåß íá

åëá÷éóôïðïéÞóåé ôïí áñéèìü ôùí áóôï÷éþí ìíÞìçò, áíáäéáôÜóóïíôáò ôç óåéñÜ áðïèÞêåõóçò ôùí

äåäïìÝíùí ôùí ðïëõäéÜóôáôùí ðéíÜêùí óôç ìíÞìç, þóôå íá áêïëïõèåß ôç óåéñÜ ðñïóðÝëáóÞò

ôïõò áðü ôïí êþäéêá öùëéáóìÝíùí âñü÷ùí, áöüôïõ Ý÷åé åöáñìïóôåß óå áõôüí ìåôáó÷çìáôéóìüò

õðåñêüìâùí. Óôç ìÝèïäï ìç-ãñáììéêÞò áðïèÞêåõóçò ðïõ áíáðôýóåôáé, ôá äåäïìÝíá ôùí ðéíÜêùí

÷ùñßæïíôáé óå ïìÜäåò (blocks) ïé ïðïßåò ôáõôßæïíôáé ìå ôá tiles ôïõ ìåôáó÷çìáôéóìïý õðåñ-

êüìâùí, êáé áðïèçêåýïíôáé óå äéáäï÷éêÝò èÝóåéò ìíÞìçò. Ìå ôïí ôñüðï áõôü, ç áêïëïõèßá ôùí

ðñïóðåëÜóåùí äåäïìÝíùí áðü ôïí êþäéêá âñü÷ùí åõèõãñáììßæåôáé ìå ôç óåéñÜ áðïèÞêåõóÞò ôïõò

óôç ìíÞìç. Ç ìåôáôñïðÞ ôçò ðïëõäéÜóôáôçò äåéêôïäüôçóçò ôùí ðéíÜêùí óôç äåéêôïäüôçóç ôùí

ìç-ãñáììéêþí äéáôÜîåùí äåäïìÝíùí ðïõ ðñïêýðôïõí, ãßíåôáé ôá÷ýôáôá ìå áðëÝò äõáäéêÝò ðñÜîåéò

ðÜíù óå \áñáéùìÝíïõò" áêåñáßïõò. Ôá ðåéñáìáôéêÜ áðïôåëÝóìáôá êáé ïé ðñïóïìïéþóåéò áðïäåé-

êíýïõí üôé ç óõíïëéêÞ åðßäïóç âåëôéþíåôáé óçìáíôéêÜ, ÷Üñç óôç ìåßùóç ôùí áóôï÷éþí ìíÞìçò,

üôáí óõíäõÜæåôáé ï ìåôáó÷çìáôéóìüò õðåñêüìâùí ìå ôéò ìç-ãñáììéêÝò äéáôÜîåéò äåäïìÝíùí óå

ïìÜäåò êáé ôçí äõáäéêÞ äåéêôïäüôçóç ôùí äåäïìÝíùí.

Ç óõíÝðåéá ôçò ðñïôåéíüìåíçò ìåèüäïõ óå üôé áöïñÜ ôç óõíïëéêÞ åðéôÜ÷õíóç ôïõ ÷ñüíïõ

åêôÝëåóçò åîáñôÜôáé óå ìåãÜëï âáèìü áðü ôçí åðéëïãÞ ôïõ êáôÜëëçëïõ ìåãÝèïõò tile. Óôçí

ðáñïýóá äéáôñéâÞ áíáëýåôáé ç äéáäéêáóßá ðáñáãùãÞò ôùí áóôï÷éþí êñõöÞò ìíÞìçò êáé TLB

vi

óôéò ìç-ãñáììéêÝò äéáôÜîåéò äåäïìÝíùí óå ïìÜäåò. Óýìöùíá ìå ôá áðïôåëÝóìáôá ôçò áíÜëõóçò

áõôÞò, åðéëÝãåôáé ôï âÝëôéóôï ìÝãåèïò tile, ìå óôü÷ï ôç ìÝãéóôç áîéïðïßçóç ôïõ ìåãÝèïõò ôçò

L1 êñõöÞò ìíÞìçò êáé ôáõôü÷ñïíá ôçí áðïôñïðÞ ôùí áóôï÷éþí ëüãù óõãêñïýóåùí óôçí êñõöÞ

ìíÞìç. Áðïäåéêíýåôáé üôé óå âåëôéóôïðïéçìÝíïõò êþäéêåò, ðïõ Ý÷åé åöáñìïóôåß ðñþéìç áíÜêëçóç

äåäïìÝíùí, îåäßðëùìá âñü÷ùí, áíÜèåóç ìåôáâëçôþí óå ðñïóùñéíïýò êáôá÷ùñçôÝò êáé åõèõãñÜì-

ìéóç ôùí äéáöïñåôéêþí ðéíÜêùí, ôá tiles, ìå ìÝãåèïò ßóï ìå ôçí ÷ùñçôéêüôçôá ôçò L1 êñõöÞò

ìíÞìçò, áîéïðïéïýí ôçí L1 êñõöÞ ìíÞìç êáôÜ âÝëôéóôï ôñüðï, áêüìá êáé óôéò ðåñéðôþóåéò ðïõ

ðñïóðåëáýíïíôáé ðåñéóóüôåñïé áðü Ýíáò ðßíáêåò äåäïìÝíùí. Ôï ðñïôåéíüìåíï ìÝãåèïò tile åßíáé

óõãêñéôéêÜ ìå Üëëåò ìåèüäïõò ìåãáëýôåñï, äßíïíôáò åðéðëÝïí ôï ðëåïíÝêôçìá ôïõ ìåéùìÝíïõ

áñéèìïý áóôï÷éþí ëüãù ôùí ëáíèáóìÝíùí ðñïâëÝøåùí äéáêëÜäùóçò ôùí öùëéáóìÝíùí âñü÷ùí.

ÔÝëïò, Ýíá Üëëï èÝìá ðïõ äåí åß÷å ìÝ÷ñé óôéãìÞò åîåôáóôåß óôçí åùò ôþñá âéâëéïãñáößá

åßíáé ç åðßäïóç ìßáò åöáñìïãÞò, üôáí áõôÞ åêôåëåßôáé ìüíç ôçò óå ìç÷áíÞìáôá ðïõ åßíáé åîïðëé-

óìÝíá ìå ôçí ôå÷íéêÞ ôçò Ôáõôü÷ñïíçò ÐïëõíçìÜôùóçò. Ç ôå÷íéêÞ áõôÞ åß÷å ðñïôáèåß ãéá ôç

âåëôßùóç ôïõ ñõèìïý åêôÝëåóçò åíôïëþí ìÝóù ôçò ôáõôü÷ñïíçò åêôÝëåóçò åíôïëþí áðü äéáöïñå-

ôéêÜ íÞìáôá (ôá ïðïßá ðñïÝñ÷ïíôáé åßôå áðü äéáöïñåôéêÝò åöáñìïãÝò Þ áðü ðáñáëëçëïðïéçìÝíåò

åöáñìïãÝò). Ïé ðñüóöáôåò ìåëÝôåò Ý÷ïõí äåßîåé üôé ç áíïìïéïãÝíåéá ôùí ôáõôü÷ñïíá åêôåëïý-

ìåíùí íçìÜôùí åßíáé áðü ôïõò ðáñÜãïíôåò ðïõ åðçñåÜæïõí èåôéêÜ ôçí åðßäïóç ôùí åöáñìïãþí.

Ùóôüóï, ç åðéôÜ÷õíóç ôùí ðáñÜëëçëùí åöáñìïãþí åîáñôÜôáé óå ìåãÜëï âáèìü áðü ôïõò ìç÷á-

íéóìïýò óõã÷ñïíéóìïý êáé åðéêïíùíßáò ìåôáîý ôùí äéáöïñåôéêþí, áëëÜ ðéèáíüôáôá åîáñôþìåíùí

ìåôáîý ôïõò, íçìÜôùí. ÅðéðëÝïí, êáèþò ôá äéáöïñåôéêÜ íÞìáôá ôùí ðáñÜëëçëùí åöáñìïãþí

Ý÷ïõí óôéò ðåñéóóïôÝñåò ðåñéðôþóåéò üìïéïõ ôýðïõ åíôïëÝò (ð.÷. ðñÜîåéò êéíçôÞò õðïäéáóôïëÞò,

áêÝñáéåò ðñÜîåéò, Üëìáôá, êëð), êáôÜ ôçí åêôÝëåóÞ ôïõò óôïõò êïéíïýò ðïñïõò ôïõ óõóôÞìáôïò

óõíïóôßæïíôáé êáé óåéñéïðïéïýíôáé êáôÜ ôç äéÝëåõóÞ ôïõò ìÝóá áðü óõãêåêñéìÝíåò ëåéôïõñãéêÝò

ìïíÜäåò, ìå áðïôÝëåóìá íá ìçí ìðïñåß íá åðéôåõ÷èåß óçìáíôéêÞ åðéôÜ÷õíóç ôùí åöáñìïãþí. Óôç

äéáôñéâÞ áõôÞ áðïôéìþíôáé êáé óõãêñßíïíôáé ç ðñþéìç áíÜêëçóç äåäïìÝíùí êáé ï ðáñáëëçëéóìüò

åðéðÝäïõ íÞìáôïò (thread-level parallelism - TLP). ÔÝëïò åîåôÜæåôáé ç åðßäñáóç ôùí ìç÷áíéóìþí

óõã÷ñïíéóìïý óôéò ðïëõíçìáôéêÝò ðáñÜëëçëåò åöáñìïãÝò ðïõ åêôåëïýíôáé áðü åðåîåñãáóôÝò ðïõ

äéáèÝôïõí ôáõôü÷ñïíç ðïëõíçìÜôùóç.

ËÝîåéò-êëåéäéÜ: Éåñáñ÷ßá ÌíÞìçò, Ìåôáó÷çìáôéóìüò Õðåñêüìâùí (Tiling), Ìç-ãñáììéêïß ìå-

ôáó÷çìáôéóìïß äåäïìÝíùí, ÄõáäéêÝò ìÜóêåò, Ðñþéìç áíÜêëçóç äåäïìÝíùí, Îåäßðëùìá âñü÷ùí,

ÅðéëïãÞ ÌåãÝèïõò Tile, Ôáõôü÷ñïíç ÐïëõíçìÜôùóç, Öïñôßï ìßáò ìüíï ÅöáñìïãÞò, ÁðåëåõèÝ-

ñùóç Ðüñùí ÓõóôÞìáôïò áðü ôá Üåñãá ÍÞìáôá.

Abstract

One of the key challenges computer architects and compiler writers are facing, is the increas-

ing discrepancy between processor cycle times and main memory access times. To overcome

this problem, program transformations that decrease cache misses are used, to reduce average

latency for memory accesses. Tiling is a widely used loop iteration reordering technique for

improving locality of references. Tiled codes modify the instruction stream to exploit cache

locality for array accesses.

This thesis adds some intuition and some practical solutions to the well-studied memory

hierarchy problem. We further reduce cache misses, by restructuring the memory layout of multi-

dimensional arrays, that are accessed by tiled instruction code. In our method, array elements

are stored in a blocked way, exactly as they are swept by the tiled instruction stream. We present

a straightforward way to easily translate multi-dimensional indexing of arrays into their blocked

memory layout using simple binary-mask operations. Indices for such array layouts are now

easily calculated based on the algebra of dilated integers, similarly to morton-order indexing.

Actual experimental and simulation results illustrate that execution time is greatly improved

when combining tiled code with tiled array layouts and binary mask-based index translation

functions.

The stability of the achieved performance improvements are heavily dependent on the ap-

propriate selection of tile sizes, taking into account the actual layout of the arrays in memory.

Ôhis thesis provides a theoretical analysis for the cache and TLB performance of blocked data

layouts. According to this analysis, the optimal tile size that maximizes L1 cache utilization,

should completely �t in the L1 cache, to avoid any interference misses. We prove that when

applying optimization techniques, such as register assignment, array alignment, prefetching and

loop unrolling, tile sizes equal to L1 capacity o�er better cache utilization, even for loop bo-

dies that access more than just one array. Increased self- or/and cross-interference misses are

now tolerated through prefetching. Such larger tiles also reduce lost CPU cycles due to less

mispredicted branches.

viii

Another issue, that had not been thoroughly examined so far, is Simultaneous Multithreading

(SMT) for single-program workloads. SMT has been proposed to improve system throughput by

overlapping multiple (either multi-programmed or explicitly parallel) threads on a single wide-

issue processor. Recent studies have demonstrated that heterogeneity of simultaneously executed

applications can bring up signi�cant performance gains due to SMT. However, the speedup of a

single application that is parallelized into multiple threads, is often sensitive to the e�ciency of

synchronization and communication mechanisms between its separate, but possibly dependent,

threads. Moreover, as these separate threads tend to put pressure on the same architectural

resources, no signi�cant speedup can be achieved. This thesis evaluates and contrasts software

prefetching and thread-level parallelism (TLP) techniques. It also examines the e�ect of thread

synchronization mechanisms on multithreaded parallel applications that are executed on a single

SMT processor.

Keywords: Memory Hierarchy, Loop tiling, Blocked Array Layouts, Binary Masks, Prefetching,

Loop Unrolling, Tile Size Selection, Simultaneous Multithreading, Single Program Workload,

Resource Release by idle Threads.

Contents

Ðåñßëçøç v

Abstract vii

List of Figures xiii

List of Tables xvii

Áíôß Ðñïëüãïõ xix

1 Introduction 1

1.1 Motivation . 1

1.1.1 Compiler Optimizations . 3

1.1.2 Non-linear Memory Layouts . 4

1.1.3 Tile Size/Shape Selection . 5

1.2 Contributions . 7

1.3 Thesis Overview . 8

1.4 Publications . 8

2 Basic Concepts 11

2.1 Memory Hierarchy . 11

2.2 Cache misses . 13

2.3 Cache Organization . 14

2.3.1 Pseudo-associative caches . 15

2.3.2 Victim Caches . 15

2.3.3 Prefetching . 16

2.4 Cache replacement policies . 17

2.5 Write policies . 18

2.6 Virtual Memory . 19

x CONTENTS

2.7 Iteration Space . 20
2.8 Data dependencies . 20
2.9 Data Reuse . 21
2.10 Loop Transformations . 22

3 Fast Indexing for Blocked Array Layouts 31
3.1 The problem: Improving cache locality for array computations 31
3.2 Morton Order matrices . 33
3.3 Blocked array layouts . 36

3.3.1 The 4D layout . 36
3.3.2 The Morton layout . 38
3.3.3 Our approach . 41
3.3.4 Mask Theory . 44
3.3.5 Implementation . 45
3.3.6 Example : Matrix Multiplication . 47
3.3.7 The Algorithm to select the Optimal Layout per Array 50

3.4 Summary . 53

4 A Tile Size Selection Analysis 55
4.1 Theoretical analysis . 56

4.1.1 Machine and benchmark speci�cations . 56
4.1.2 Data L1 misses . 57
4.1.3 L2 misses . 69
4.1.4 Data TLB misses . 70
4.1.5 Mispredicted branches . 71
4.1.6 Total miss cost . 72

4.2 Summary . 74

5 Simultaneous Multithreading 75
5.1 Introduction . 75
5.2 Related Work . 76
5.3 Implementation . 79
5.4 Quantitative analysis on the TLP and ILP limits of the processor 81

5.4.1 Co-executing streams of the same type . 81
5.4.2 Co-executing streams of di�erent types . 82

5.5 Summary . 83

6 Experimental Results 85
6.1 Experimental results for Fast Indexing . 85

6.1.1 Execution Environment . 85

CONTENTS xi

6.1.2 Time Measurements . 86
6.1.3 Simulation results . 91

6.2 Experimental Results for Tile Sizes . 93
6.2.1 Execution Environment . 93
6.2.2 Experimental veri�cation . 95
6.2.3 MBaLt performance: Tile size selection 95
6.2.4 MBaLt vs linear layouts . 95
6.2.5 More Experiments . 97

6.3 Experimental Framework and Results on SMTs 99
6.3.1 Further Analysis . 103

7 Conclusions 107
7.1 Thesis Contributions . 107

Appendices 109

A Table of Symbols 111

B Hardware Architecture 113

C Program Codes 115
C.1 Matrix Multiplication . 115
C.2 LU decomposition . 116
C.3 STRMM: Product of Triangular and Square Matrix 116
C.4 SSYMM: Symmetric Matrix-Matrix Operation 117
C.5 SSYR2K: Symmetric Rank 2k Update . 118

Bibliography 119

xii CONTENTS

List of Figures

2.1 The Memory Hierarchy pyramid . 12

2.2 Virtual Memory . 19

3.1 Row-major indexing of a 4×4 matrix, analogous Morton indexing and Morton
indexing of the order-4 quadtree . 33

3.2 The 4-dimensional array in 4D layout . 36

3.3 The tiled array and indexing according to Morton layout 38

3.4 The 4-dimensional array in Morton layout in their actual storage order: padding
elements are not canonically placed on the borders of the array, but mixed with
useful elements . 39

3.5 ZZ-transformation . 42

3.6 NZ-transformation . 43

3.7 NN-transformation . 44

3.8 ZN-transformation . 45

3.9 A 2-dimensional array converted to 1-dimensional array in ZZ-transformation . . 47

3.10 Conversion of the linear values of row and column indices to dilated ones through
the use of masks. This is an 8× 8 array with 4× 4 element tiles 47

3.11 Matrix multiplication: C[i, j]+ = A[i, k] ∗ B[k, j]: Oval boxes show the form of
row and column binary masks. Shifting from element to element inside a tile takes
place by changing the four least signi�cant digits of the binary representation of
the element position. Switching from tile to tile takes place by changing the 2
most signi�cant digits of the binary representation of the element position. . . . 48

3.12 Flow Chart of the proposed optimization algorithm: it guides optimal nested loop
ordering, which is being matched with respective storage transformation 51

4.1 Reuse of array elements in the matrix multiplication code 57

4.2 Alignment of arrays A, B, C, when N2 ≤ CL1 . 58

4.3 Alignment of arrays A, B, C, when CL1 = N2 . 59

xiv LIST OF FIGURES

4.4 Alignment of arrays A, B, C, when CL1 = N2, with T = N 60

4.5 Alignment of arrays A, B, C, when N2 > CL1 and T ·N < CL1 61

4.6 Alignment of arrays A, B, C, when 3T 2 < CL1 ≤ T ·N 62

4.7 Alignment of arrays A, B, C, when N2 > CL1, T 2 ≤ CL1 < 3T 2 63

4.8 Alignment of arrays A, B, C, when N2 > CL1, T 2 > CL1 > T 64

4.9 Number of L1 cache misses for various array and tile sizes in direct mapped caches,
when the described in section 4.1.2 alignment has been applied (UltraSPARC II
architecture) . 66

4.10 Number of L1 cache misses for various array and tile sizes in set associative caches
(Xeon DP architecture) . 68

4.11 Number of L2 direct mapped cache misses for various array and tile sizes 69

4.12 Number of TLB misses for various array and tile sizes 72

4.13 The total miss cost for various array and tile sizes 73

5.1 Resource partitioning in Intel hyperthreading architecture 79

5.2 Average CPI for di�erent TLP and ILP execution modes of some common in-
struction streams . 82

5.3 Slowdown factors for the co-execution of various integer instruction streams . . . 84

5.4 Slowdown factors for the co-execution of various
oating-point instruction streams 84

6.1 Total execution results in matrix multiplication (-xO0, UltraSPARC) 86

6.2 Total execution results in matrix multiplication (-fast, UltraSPARC) 86

6.3 Total execution results in matrix multiplication (-fast, SGI Origin) 86

6.4 Total execution results in LU-decomposition (-xO0, UltraSPARC) 87

6.5 Total execution results in LU-decomposition (-fast, UltraSPARC) 87

6.6 Total execution results in LU-decomposition for larger arrays and hand optimized
codes (-fast, SGI Origin) . 87

6.7 Total execution results in SSYR2K (-xO0, UltraSPARC) 88

6.8 Total execution results in SSYR2K (-fast, UltraSPARC) 88

6.9 Total execution results in SSYMM (-xO0, UltraSPARC) 89

6.10 Total execution results in SSYMM (-fast, UltraSPARC) 89

6.11 Total execution results in SSYMM (-O0, Athlon XP) 90

6.12 Total execution results in SSYMM (-O3, Athlon XP) 90

6.13 Total execution results in STRMM (-xO0, UltraSPARC) 91

6.14 Total execution results in STRMM (-fast, UltraSPARC) 91

6.15 Misses in Data L1, Unified L2 cache and data TLB for matrix multiplication
(UltraSPARC) . 92

6.16 Misses in Data L1, Uni�ed L2 cache and data TLB for LU-decomposition (Ultra-
SPARC) . 93

LIST OF FIGURES xv

6.17 Misses in Data L1, Unified L2 cache and data TLB for LU-decomposition (SGI
Origin) . 94

6.18 Execution time of the Matrix Multiplication kernel for various array and tile sizes
(UltraSPARC, -fast) . 95

6.19 Total performance penalty due to data L1 cache misses, L2 cache misses and
data TLB misses for the Matrix Multiplication kernel with use of Blocked array
Layouts and e�cient indexing. The real execution time of this benchmark is also
illustrated (UltraSPARC) . 96

6.20 Total performance penalty and real execution time for the Matrix Multiplication
kernel (linear array layouts - UltraSPARC) . 96

6.21 The relative performance of the two di�erent data layouts (UltraSPARC) 97
6.22 Normalized performance of 5 benchmarks for various array and tile sizes (Ultra-

SPARC) . 97
6.23 Total performance penalty for the Matrix Multiplication kernel (Pentium III) . . 99
6.24 Pentium III - Normalized performance of �ve benchmarks for various array and

tile sizes . 99
6.25 Athlon XP - Normalized performance of �ve benchmarks for various array and

tile sizes . 100
6.26 Xeon - The relative performance of the three di�erent versions 101
6.27 Xeon - Normalized performance of the matrix multiplication benchmark for var-

ious array and tile sizes (serial MBaLt) . 101
6.28 Xeon - Normalized performance of the matrix multiplication benchmark for var-

ious array and tile sizes (2 threads - MBaLt) . 102
6.29 Xeon - Normalized performance of the matrix multiplication benchmark for var-

ious array and tile sizes (4 threads - MBaLt) . 102
6.30 SMT experimental results in the Intel Xeon Architecture, with HT enabled . . . 103
6.31 Instruction issue ports and main execution units of the Xeon processor 105

xvi LIST OF FIGURES

List of Tables

3.1 Indexing of array dimensions, in the matrix multiplication code, when loops are
nested in (ii, jj, kk, i, j, k) order : C[i, j]+ = A[i, k] ∗B[k, j] 49

4.1 Calculation formulas for direct-mapped L1 cache misses 65
4.2 Formulas for set associative Data L1 misses . 68
4.3 Formulas for Data TLB misses . 71

5.1 Hardware management in Intel hyper-threaded processors 78
5.2 Average CPI for di�erent TLP and ILP execution modes of some common in-

struction streams . 81
5.3 Slowdown factors from the co-execution of various instruction streams 83

6.1 Processor subunits utilization from the viewpoint of a speci�c thread 104

A.1 Table of Symbols . 111

B.1 Table of machine characteristics, used for experimentation 113
B.2 Table of machine characteristics, used for experimentation 114

xviii LIST OF TABLES

Áíôß Ðñïëüãïõ

Ç ðáñïýóá äéäáêôïñéêÞ äéáôñéâÞ åêðïíÞèçêå óôïí ÔïìÝá Ôå÷íïëïãßáò ÐëçñïöïñéêÞò êáé
Õðïëïãéóôþí, ôçò Ó÷ïëÞò Çëåêôñïëüãùí Ìç÷áíéêþí êáé Ìç÷áíéêþí Õðïëïãéóôþí, ôïõ Åèíéêïý
Ìåôóüâéïõ Ðïëõôå÷íåßïõ. ÐåñéëáìâÜíåé ôçí Ýñåõíá êáé ôá óõìðåñÜóìáôá ðïõ ðñïÝêõøáí êáôÜ
ôç äéÜñêåéá ôùí ìåôáðôõ÷éáêþí óðïõäþí ìïõ óôï ÅñãáóôÞñéï Õðïëïãéóôéêþí ÓõóôçìÜôùí ôçò
ó÷ïëÞò áõôÞò. Ç äéáôñéâÞ áðïôåëåßôáé áðü äýï ìÝñç: Ôï ðñþôï åßíáé ãñáììÝíï óôá áããëéêÜ,
ðñïêåéìÝíïõ íá ìðïñåß íá äéáâáóôåß áðü ôçí áêáäçìáúêÞ êïéíüôçôá åêôüò ÅëëÜäáò. Ôï äåýôåñï
ìÝñïò áðïôåëåß ðåñéëçðôéêÞ ìåôÜöñáóç ôïõ ðñþôïõ óôá åëëçíéêÜ.

Óôéò áêüëïõèåò ãñáììÝò èá Þèåëá íá åêöñÜóù ôéò èåñìÝò åõ÷áñéóôßåò ìïõ óå üëïõò åêåßíïõò
ðïõ ìå âïÞèçóáí åßôå Üìåóá ìå ôçí êáèïäÞãçóç ðïõ ìïõ ðñïóÝöåñáí, åßôå Ýììåóá ìå ôçí çèéêÞ
óôÞñéîÞ ôïõò êáé óõíÝâáëáí ïõóéáóôéêÜ óôçí ïëïêëÞñùóç ôçò ðáñïýóáò äéáôñéâÞò. Ðñþôïí áðü
üëïõò èá Þèåëá íá åõ÷áñéóôÞóù ôïí åðéâëÝðïíôá êáèçãçôÞ ìïõ, Ðáíáãéþôç ÔóáíÜêá, êáèþò
åêåßíïò ìå ìýçóå óôïí êüóìï ôçò Áñ÷éôåêôïíéêÞò Õðïëïãéóôþí, ùò ðñïðôõ÷éáêÞ öïéôÞôñéá, êáé
ìïõ ìåôÝäùóå ôçí áãÜðç ôïõ ãéá ôï áíôéêåßìåíï, ôï ïðïßï åðÝëåîá óôç óõíÝ÷åéá íá äéåñåõíÞóù
êáôÜ ôç äéÜñêåéá ôùí ìåôáðôõ÷éáêþí óðïõäþí ìïõ. Ðñüêåéôáé ãéá ôïí Üíèñùðï ôïõ ïðïßïõ ç Þñåìç
äýíáìç, ç åõãÝíåéá êáé ç çèéêÞ Ýäéíå óôéò äýóêïëåò êáôáóôÜóåéò ôçí éóïññïðßá êáé ôç äéÝîïäï.
Ôïí åõ÷áñéóôþ éäéáßôåñá ãéá ôçí åìðéóôïóýíç ìå ôçí ïðïßá ìå ðåñéÝâáëå êáé ôçí áõôïðåðïßèçóç
ðïõ ìïõ ìåôÝäéäå.

Óôç óõíÝ÷åéá èá Þèåëá íá åõ÷áñéóôÞóù ôï äåýôåñï ìÝëïò ôçò óõìâïõëåõôéêÞò åðéôñïðÞò ìïõ,
ôïí êáèçãçôÞ Ãåþñãéï Ðáðáêùíóôáíôßíïõ, ï ïðïßïò ùò êåöáëÞ ôïõ åñãáóôçñßïõ ìïõ Ýäùóå ôç
äõíáôüôçôá íá âñßóêïìáé óå Ýíá êáëÜ äïìçìÝíï êáé Üñôéá ïñãáíùìÝíï ÷þñï. Åßíáé ï Üíèñù-
ðïò ðïõ ìå ôçí ôå÷íïãíùóßá êáé ôçí ðåñéññÝïõóá ãíþóç ðïõ ìïõ åîáóöÜëéóå, áðïôÝëåóå óçìåßï
áíáöïñÜò óôï åðéóôçìïíéêü ôïõ ðåäßï. Ôïí åõ÷áñéóôþ èåñìÜ, ãéáôß ìå ôçí áêåñáéüôçôá ôùí ðñï-
èÝóåùí êáé ôùí åíåñãåéþí ôïõ, áðïôåëïýóå ðÜíôá ðüëï Ýëîçò áíôßóôïé÷á áêÝñáéùí ðñïðôõ÷éáêþí
êáé ìåôáðôõ÷éáêþí öïéôçôþí êáé ðïëýôéìùí óõíåñãáôþí.

ÅðéðëÝïí, íéþèù ôï ÷ñÝïò íá åêöñÜóù ôéò åéëéêñéíåßò åõ÷áñéóôßåò ìïõ óôï ôñßôï ìÝëïò ôçò
óõìâïõëåõôéêÞò åðéôñïðÞò ìïõ, ôïí Åðßêïõñï êáèçãçôÞ ÍåêôÜñéï Êïæýñç. ÁéóèÜíïìáé éäéáßôåñá
ôõ÷åñÞ ðïõ óôá ôåëåõôáßá Ýôç ôùí ðñïðôõ÷éáêþí óðïõäþí ìïõ åß÷á ôçí åõêáéñßá íá áêïýóù ôéò
äéáëÝîåéò ôïõ êáé áñãüôåñá, êáôÜ ôçí åêðüíçóç ôçò äéäáêôïñéêÞò ìïõ äéáôñéâÞò, íá óõíåñãáóôþ
ìáæß ôïõ. Ìå ôï ðñïóùðéêü ðáñÜäåéãìá ôçò åñãáôéêüôçôáò, ôçò ìåèïäéêüôçôáò êáé ôçò áäéÜëåéðôçò
áíáíÝùóçò ôùí ãíþóåþí ôïõ, áðïôåëïýóå ðÜíôïôå, ãéá üëá ôá ìÝëç ôïõ åñãáóôçñßïõ, êéíçôÞñéá

äýíáìç ðñïò ôç óõíå÷Þ áíáæÞôçóç åñåèéóìÜôùí, ðïõ ïäÞãçóáí ôï åñãáóôÞñéï óôçí áé÷ìÞ ôçò
ôå÷íïëïãßáò. ¹ôáí ï Üíèñùðïò ðïõ äéåýñõíå ôïõò ïñßæïíôÝò ìïõ, åðéóôçìïíéêïýò êáé êïéíùíé-
êïýò, ìå ôéò ðáñïôñýíóåéò ôïõ íá åðéóêåöèþ ÷þñåò ôïõ åîùôåñéêïý ìå êïñõöáßá ðáíåðéóôÞìéá, íá
Ýñèù óå åðáöÞ ìå ôïõò ðëÝïí áíáãíùñéóìÝíïõò åðéóôÞìïíåò óôï ðåäßï ôçò åðéóôÞìçò ìïõ êáé ìå
Üëëïõò õðïøÞöéïõò äéäÜêôïñåò, ðïõ äéÝèåôáí áíÝëðéóôï æÞëï ãéá ôçí ÝñåõíÜ ôïõò. Ôïí åõ÷áñéóôþ
ðñáãìáôéêÜ ãéá ôï ÷ñüíï ðïõ äéÝèåóå ãéá íá ðáñáêïëïõèåß ôçí åñåõíçôéêÞ ìïõ ðïñåßá, áëëÜ êáé
ãéá ôéò þñåò ðïõ áöéÝñùóå ðáñåõñéóêüìåíïò óôéò óõëëïãéêÝò óõæçôÞóåéò ôïõ åñãáóôçñßïõ.

Èá Þôáí ðáñÜëåéøç íá ìçí åõ÷áñéóôÞóù ôá õðüëïéðá ìÝëç ôïõ åñãáóôçñßïõ, ìå ðñþôïõò
ôïí Íßêï Áíáóôüðïõëï êáé ôïí ÊïñíÞëéï Êïýñôç, ðïõ ç óõíåñãáóßá ìáæß ôïõò áðïäåß÷ôçêå
éäéáßôåñá äçìéïõñãéêÞ. Ôá áðïôåëÝóìáôá ôçò ðáñïýóáò äéáôñéâÞò èá Þôáí óßãïõñá öôù÷üôåñá
÷ùñßò ôçí ïõóéáóôéêÞ óõìâïëÞ ôïõò. Áí êáé íåþôåñá ìÝëç ôïõ åñãáóôçñßïõ, ç âáèéÜ ãíþóç ôïõ
áíôéêåéìÝíïõ ðïõ êáëëéÝñãçóáí áðü ðïëý íùñßò, ç åöåõñåôéêüôçôá êáé ç äéåñåõíçôéêÞ ôïõò äéÜèåóç,
óå óõíäõáóìü ìå ôçí áèüñõâç åñãáôéêüôçôÜ ôïõò, ôïõò êáôÝóôçóå ãéá ìÝíá áíáíôéêáôÜóôáôïõò
óõíïäïéðüñïõò. Åý÷ïìáé ôï ìÝëëïí íá áíôáìåßøåé ôïõò êüðïõò ôïõò êáé íá éêáíïðïéÞóåé ôá üíåéñÜ
ôïõò.

Áêüìç, èá Þèåëá íá åõ÷áñéóôÞóù ôïí Ãéþñãï Ãêïýìá, ôïí ¶ñç Óùôçñüðïõëï, ôï Íßêï Äñï-
óéíü êáé ôçí áäåëöÞ ìïõ, Ìáñßá ÁèáíáóÜêç. ÁéóèÜíïìáé üôé ÷ùñßò ôéò ãíþóåéò êáé ôçí ðáñïõóßá
ôïõò ôï åñãáóôÞñéï èá Þôáí ðïëý Üäåéï áðü ôå÷íïãíùóßá êáé ùñéìüôçôá, áëëÜ êáé áðü æùÞ, íÝåò
éäÝåò êáé áíôßëïãï, øõ÷éóìü: üëá åêåßíá ôá óôïé÷åßá ðïõ óå ôñáâïýí íá ðåñÜóåéò áìÝôñçôåò þñåò
ìÝóá óôïõò ôÝóóåñéò ôïß÷ïõò ôïõ åñãáóôçñéáêïý ðåñéâÜëëïíôïò, íéþèïíôáò üôé æåéò áëçèéíÞ æùÞ.
Äåí èá ìðïñïýóá íá ìçí êÜíù éäéáßôåñç áíáöïñÜ óôçí áäåëöÞ ìïõ, ãéáôß ìå Ýìáèå íá ìïéñÜæï-
ìáé, íá áãáðÜù, ìïõ Ýäéíå êáé ìïõ äßíåé ìáèÞìáôá ðñïíïçôéêüôçôáò, áðïôåëåß ãéá ìÝíá ôïí ïäçãü
ðñïò áíþôåñïõò óôü÷ïõò, óõìðëçñþíåé ôéò áäõíáìßåò ìïõ, ìå êÜíåé íá íéþèù ðéï äõíáôÞ êáé ìüíï
ðïõ åßíáé äßðëá ìïõ. ÔÝëïò, èá Þèåëá íá áíáöÝñù îå÷ùñéóôÜ ôïí ÂáããÝëç Êïýêç, ôïí Áíôþíç
×áæÜðç, ôïí Áíôþíç ÆÞóéìï, ôï Ãéþñãï ÔóïõêáëÜ, ôï Ãéþñãï ÂåñõãÜêç êáé üëá ôá õðüëïéðá
íÝá Þ ðáëéüôåñá ìÝëç ôïõ åñãáóôçñßïõ, ðïõ ìå ôçí åíåñãçôéêüôçôá, ôéò ãíþóåéò êáé ôï ÷áñáêôÞñá
ôïõò ÷ôßæïõí ôçí êïõëôïýñá ôïõ Åñãáóôçñßïõ Õðïëïãéóôéêþí ÓõóôçìÜôùí.

ÔÝëïò, åõ÷áñéóôþ èåñìÜ ôï ÊïéíùöåëÝò ºäñõìá ÁëÝîáíäñïò ÙíÜóçò ãéá ôçí ïéêïíïìéêÞ óôÞ-
ñéîç ðïõ ìïõ ðáñåß÷å ìÝóù ìßáò õðïôñïößáò ìåôáðôõ÷éáêþí óðïõäþí.

Ç åñãáóßá áõôÞ áöéåñþíåôáé óôçí ïéêïãÝíåéÜ ìïõ, óå üëïõò åêåßíïõò ðïõ êáôÝ÷ïõí ìßá îå÷ù-
ñéóôÞ èÝóç óôç æùÞ ìïõ.

ÁèÞíá, Éïýëéïò 2006

Åõáããåëßá ÁèáíáóÜêç

CHAPTER 1
Introduction

Due to the demand for memory space ever augmenting and the speed of microprocessors im-
proving continuously at high rates, memory technology could not keep up with programmers'
needs. Large storage memories cannot respond as fast as smaller RAM modules. To keep pro-
cessor performance unhampered, engineers addressed the insertion of small but fast memories
between the main memory and the processor. This is the cache memory and, theoretically,
allows the microprocessor to execute at full speed. However, when the program execution leads
to instructions or data not in the cache, they need to be fetched from the main memory and the
microprocessor has to stall execution.

As a result, the problem persists and researchers indicate that unless memory bandwidth and
latency improve extremely in future machines, we are going to face the memory wall [WM95].
This thesis describes a software approach of bridging the widening gap between processors and
main memory, exploiting the hardware characteristics of memory structure. The rest of this
chapter provides a detailed motivation behind this thesis and introduces the goals that have
been achieved. Finally, we list the contributions of this work and present a road map for the
remainder of the thesis.

1.1 Motivation

The performance gap between memory latency and processor speed is constantly dilating at the
rate of almost 50% per year [PJ03]. Thus, many types of applications still waste much of their
execution time, waiting for data to be fetched from main memory. To alleviate this problem,
multi-level memory hierarchies are used and compiler transformations are introduced to increase
locality of references for iterative instruction streams.

Memory is organized into several hierarchical levels. Main memory serves as a cache for
the virtual memory swap�le stored on the hard disk. Level 2 (L2) cache lies between the
actual processor die and main memory, and all processors have a fast L1 cache integrated into

2 Introduction

the processor die itself. The idea of cache has grown along with the size and complexity of
microprocessor chips. A current high-end microprocessor can have 2 MB of cache (L2) built
into the chip. This is more than twice the entire memory address space of the original 8088
chip used in the �rst PC and clones. The cache hierarchy makes sense because each level, from
registers down to the hard disk, is an order of magnitude less expensive than the previous, and
thus each level can be an order of magnitude larger than the previous.

The cache design counts on the fundamental principles of locality: both Temporal and Spa-
tial Locality. Considering that the principles behind cache are successfully applied, data storage
systems in modern computers can theoretically approach the speed of the register �le while
having the size of a hard disk. The e�ectiveness of memory hierarchy depends not only on
the hardware design, but also on the application code, the one generated by the compiler. Of
course, the code of real applications can not have perfect locality of references. Most numerical
applications have poor performance, as they operate on large data sets that do not �t in any
cache level. However, data accesses form regular patterns that favor locality. If regularity of
references is appropriately exploited, accesses to main memory can be eliminated. For this rea-
son, an important amount of research has been devoted to code optimization, applying di�erent
kinds of transformation in order to make data transfers from main memory to cache be a close
approximation of cold start (compulsory) misses.

Nested loops are usually the most time and memory consuming parts of a program, and
are commonly found in scienti�c applications, such as image processing, computational
uid
dynamics, geophysical data analysis, and computer vision. Optimizing execution of such crit-
ical nested loops, is equivalent in essence with whole program optimization. However, manual
optimization is generally a bad practice, as the resultant code is di�cult to debug or proof read
and, quite often, too complicated to be handled by anybody else except for the prime program-
mer. Even worse, it is not
exible and easily adaptable for machines with di�erent architectural
characteristics.

We could conclude that code optimizations have to be the result of an automatic or semi-
automatic process. On the other hand, machine-dependent hand-optimizations can reach the
highest performance limits. So, even an automatic optimization tool needs to take feedback
about architecture speci�cations and the code pro�le.

The goal of this thesis is to develop a code optimization technique that exploits locality of
references and memory hierarchy to gain performance on complex numerical applications. We
focus on restructuring data memory layouts to minimize stall cycles due to cache misses. In
order to facilitate the automatic generation of tiled code that accesses nonlinear array layouts, we
propose an address calculation method of the array indices. We adopted some kind of blocked
layout and dilated integer indexing similar to Morton-order arrays. Thus, we combine data
locality, due to blocked layouts, with e�cient element access, as simple boolean operations are
only used to �nd the location of the right array element. Since data are now stored block-wise,

1.1 Motivation 3

we provide the instruction stream with a straightforward indexing to access the correct elements.
Our method is very e�ective at reducing cache misses, since the deployment of the array data
in memory follows the exact order of accesses by the tiled instruction code, achieved at no extra
runtime cost.

1.1.1 Compiler Optimizations

In order to increase the percentage of memory accesses satis�ed by caches, loop transformations
are used to modify the instruction stream structure in favor of locality of references. Loop
permutation, loop reversal and loop skewing attempt to modify the data access order to improve
data locality. Loop unrolling and software pipelining are exploiting registers and pipelined
datapath to improve temporal locality [Jim99]. Loop fusion and loop distribution can indirectly
improve reuse by enabling control transformations that were previously not legal [MCT96]. Loop
tiling and data shackling [KPCM99] although they handle the issue of locality from a di�erent
point of view, both restructure the control
ow of the program, decreasing the working set size,
to exploit temporal and spatial reuse of accessed arrays. Unimodular control transformations
described in the most cited work of Wolf and Lam [WL91] and compound transformations of
McKinley et al in [MCT96], attempt to �nd the best combination of such transformations which,
when used with tiling, ensure the correct computation order, while increasing locality of accesses
to cache memory.

Using control transformations, we change data access order but not the data storage order.
In a data-centric approach [Kan01], Kandemir proposes array uni�cation, a compiler technique
that maps multiple arrays into a single array data space, in an interleaved way, grouping to-
gether arrays accessed in successive iterations. Each group is transformed to improve spatial
locality and reduce the number of con
ict misses. Rivera and Tseng in [RT98a] use padding to
eliminate severe con
ict misses. Inter-variable padding adjusts variable base addresses, while
intra-variable padding modi�es array dimension sizes. For di�erent cache and problem sizes the
con
ict distances between di�erent array columns for linear algebra codes are calculated through
the Euclidean gcd algorithm.

Sometimes, increasing the locality of references for a group of arrays may a�ect the number
of cache hits for the other referenced arrays. Combined loop and data transformations were pro-
posed in [CL95] and [KRC99]. Cierniak and Li in [CL95] presented a cache locality optimization
algorithm, which combines both loop (control) and linear array layout transformations; but to
lessen its complexity extra constraints are required to be de�ned. Another uni�ed, systematic
algorithm, is the one presented by Kandemir et al in [KCS+99], [KRC97], [KRCB01], [KRC99],
which aims at utilizing spatial reuse in order to obtain good locality.

All previous approaches assumed linear array layouts. Programming languages provide with
multidimensional arrays which are �nally stored in a linear memory layout, either column-wise
or row-wise (canonical order). Nevertheless, the linear array memory layouts do not match

4 Introduction

the instruction stream access pattern. Since tiled code focuses on a sub-block of an array,
why not put these array elements in contiguous memory locations? In other words, since the
instruction stream and consequently the respective data access patterns are blocked ones, it
would be ideal to store arrays following exactly the same pattern, so that instruction and data
streams are aligned. Con
ict misses, especially for direct mapped or small associativity caches
are considerably reduced, since now all array elements within the same block are mapped in
contiguous cache locations and self interference is avoided.

1.1.2 Non-linear Memory Layouts

Chatterjee et al [CJL+99], [CLPT99] explored the merit of non-linear memory layouts and quan-
ti�ed their implementation cost. They proposed two families of blocked layout functions, both
of which split array elements up to a tile size, which �ts to the cache characteristics and elements
inside each tile are linearly stored. Although they claim for increasing execution-time perfor-
mance, using four-dimensional arrays, as proposed, any advantage obtained by data locality due
to blocked layouts seems to be counterbalanced by the slowdown caused by referring to four-
dimensional array elements (in comparison to response time of two- or one-dimensional arrays).
Even if we convert these four-dimensional arrays to two-dimensional ones, as proposed by Lin
et al in [LLC02], indexing the right array elements naively, requires expensive array subscripts.
Furthermore, blocked layouts in combination with level-order, Ahnentafel and Morton indexing
were used by Wise et al in [WAFG01] and [WF99]. Although their quad-tree based layouts
seems to work well with recursive algorithms, due to e�cient element indexing, no locality gain
can be obtained at non-recursive codes. Especially, since they use recursion down to the level
of a single array element, extra loss of performance is induced.

Non-linear layouts were proved to favor cache locality in all levels of memory hierarchy,
including L1, L2 caches and TLBs. Experiments in [RT99b] that exploit locality in the L2
cache, rather than considering only one level caches, demonstrate reduced cache misses, but
performance improvements are rarely signi�cant. Targeting the L1 cache, nearly all locality
bene�ts can be achieved. Most of the previous approaches target mainly the cache performance.
As problem sizes become larger, TLB performance becomes more signi�cant. If TLB thrashing
occurs, [PHP02], the overall performance will be drastically degraded. Hence TLB and cache
must be considered in concert while optimizing application performance. Park et al in [PHP03]
derive a lower bound on TLB performance for standard matrix access patterns and show that
block data layouts and Morton Layout (for recursive codes) achieve this bound. These layouts
with block size equal to the page size, minimize the number of TLB misses. Considering both
all levels of cache and TLB, a block size selection algorithm should be used to calculate a tight
range of optimal block sizes.

However, the automatic application of non-linear layouts in real compilers is a really tedious
task. It does not su�ce to identify the optimal non-linear (blocked) layout for a speci�c array,

1.1 Motivation 5

we also need to automatically generate the mapping from the multidimensional iteration indices
to the correct location of the respective data element in linear memory. Blocked layouts are very
promising subject to an e�cient address computation method. In the following, when referring
to our non-linear layouts, we will name them Blocked Array Layouts, as they are always combined
with loop tiling (they split array elements to blocks) and apply e�cient indexing to the derived
tiles.

1.1.3 Tile Size/Shape Selection

Early e�orts [MCT96], [WL91] have been dedicated to selecting the tile in such a way that its
working set �ts in the cache, so as to eliminate capacity misses. To minimize loop overhead, the
tile size should be the maximum that meets the above requirement. Recent work takes con
ict
misses into account, as well. Con
ict misses [TFJ94] may occur when too many data items map
to the same set of cache locations, causing cache lines to be
ushed from cache before they may
be used, despite su�cient capacity in the overall cache. As a result, in addition to eliminating
capacity misses [MCT96], [WL91] and maximizing cache utilization, the tile should be selected
in such a way that there are no (or few) self con
ict misses, while cross con
ict misses are
minimized [CM99], [CM95], [Ess93], [LRW91], [RT99a].

To �nd tile sizes that have few capacity misses, the surveyed algorithms restrict their can-
didate tile sizes to be the ones whose working set can entirely �t in the cache. To model self
con
ict misses due to low associativity cache, [WMC96] and [MHCF98] use the e�ective cache
size q×C (q < 1), instead of the actual cache size C, while [CM99], [CM95], [LRW91] and [SL01]
explicitly �nd the non-con
icting tile sizes. Taking into account cache line size as well, column
dimensions (without loss of generality, assume a column major data array layout) should be a
multiple of the cache line size [CM95]. If �xed blocks are chosen, Lam et al. in [LRW91] have
found that the best square tile is not larger than

√
aC
a+1 , where a = associativity. In practice, the

optimal choice may occupy only a small fraction of the cache, typically less than 10%. What's
more, the fraction of the cache used for optimal block size decreases as the cache size increases.

The desired tile shape has been explicitly speci�ed in algorithms such as [Ess93], [CM99],
[CM95], [WL91], [WMC96], [LRW91]. Both [WL91] and [LRW91] search for square tiles. In
contrast, [CM99], [CM95] and [WMC96] �nd rectangular tiles or [Ess93] even extremely tall
tiles (the maximum number of complete columns that �t in the cache). Tile shape and cache
utilization are two important performance factors considered by many algorithms, either implic-
itly through the cost model or explicitly through candidate tiles. However, extremely wide tiles
may introduce TLB thrashing. On the other hand, extremely tall or square tiles may have low
cache utilization. Apart from the static techniques, iteration compilation has been implemented
in [KKO00]. Although it can achieve high speedups, the obvious drawback of iterative compi-
lation is its long compilation time, required to generate and pro�le many versions of the source
program.

6 Introduction

Unfortunately, the performance of a tiled program resulting from existing tiling heuristics
does not have robust performance [PNDN99], [RT99a]. Instability comes from the so-called
pathological array sizes, when array dimensions are near powers of two, since cache interference
is a particular risk at that point. Array padding [HK04], [PNDN99], [RT98b], [SL01] is a compiler
optimization that increases the array sizes and changes initial locations to avoid pathological
cases. It introduces space overhead but e�ectively stabilizes program performance. Cache
utilization for padded benchmark codes is much higher overall, since padding is used to avoid
small tiles [RT99a]. As a result, more recent research e�orts have investigated the combination of
both loop tiling and array padding in the hope that both magnitude and stability of performance
improvements of tiled programs can be achieved at the same time [HK04], [RT98b], [PNDN99].
An alternative method for avoiding con
ict misses is to copy tiles to a bu�er and modify code
to use data directly from the bu�er [Ess93], [LRW91], [TGJ93]. Since data in the bu�er is
contiguous, self-interference is eliminated. If bu�ers are adjacent, then cross-interference misses
are also avoided. Copying in [LRW91] can take full advantage of the cache as it enables the
use of tiles of size

√
C ×√C in each blocked loop nest. However, performance overhead due to

runtime copying is low if tiles only need to be copied once.

TLB thrashing is a crucial performance factor since a TLB miss costs more than a L1 cache
miss and can cause severe cache stalls. While one-level cost functions su�ces to yield good per-
formance at a single level of memory hierarchy, it may not be globally optimal. Multi-level tiling
can be used to achieve locality in multiple levels (registers, caches and TLBs) simultaneously.
Such optimizations have been considered in [CM95], [HK04] and a version of [MHCF98], guided
by multi-level cost functions. Minimizing a multi-level cost function balances the relative costs
of TLB and cache misses. Optimal tiling must satisfy the capacity requirements of both TLB
and cache.

In general, most algorithms search for the largest tile sizes that generate the least amount
of capacity misses, eliminate self-con
ict misses and minimize cross-con
ict misses. Sometimes,
high cache utilization [SL99] and low cache misses may not be achieved simultaneously. As a
result, each algorithm has a di�erent approximation to cache utilization and number of cache
misses, and weigh between these two quantities.

Signi�cant work has been done to quantify the total number of con
ict misses [CM99],
[FST91], [GMM99], [HKN99], [Ver03]. Cache behaviour is extremely di�cult to analyze, re-

ecting its unstable nature, in which small modi�cations can lead to disproportionate changes
in cache miss ratio [TFJ94]. Traditionally, cache performance evaluation has mostly used sim-
ulation. Although the results are accurate, the time needed to obtain them is typically many
times greater than the total execution time of the program being simulated. To try to over-
come such problems, analytical models of cache behaviour combined with heuristics have also
been developed, to guide optimizing compilers [GMM99], [RT98b] and [WL91], or study the
cache performance of particular types of algorithm, especially blocked ones [CM99], [HKN99],

1.2 Contributions 7

[LRW91], and [Ver03]. Code optimizations, such as tile size selection, selected with the help
of predicted miss ratios require a really accurate assessment of program's code behaviour. Per-
formance degradation, due to tiled code complexity and miss-predicted branches, should also
be taken into account. Miss ratios of blocked kernels are generally a lot smaller than these
of unblocked kernels, amplifying the signi�cance of small errors in prediction. For this reason,
a combination of cache miss analysis, simulation and experimentation is the best solution for
optimal selection of critical transformations.

The previous approaches assumed linear array layouts. However, as aforementioned studies
have shown, such linear array memory layouts produce unfavorable memory access patterns,
that cause interference misses and increase memory system overhead. In order to quantify
the bene�ts of adopting nonlinear layouts to reduce cache misses, there exist several di�erent
approaches. In [RT99b], Rivera et al. considers all levels of memory hierarchy to reduce L2
cache misses as well, rather than reducing only L1 ones. He presents even fewer overall misses,
however performance improvements are rarely signi�cant. In another approach, TLB and cache
misses should be considered in concert. Park et al. in [PHP02] analyze the TLB and cache
performance for standard matrix access patterns, when tiling is used together with block data
layouts. Such layouts with block size equal to the page size, seem to minimize the number of
TLB misses. Considering both all levels of cache (L1 and L2) and TLB, a block size selection
algorithm calculates a range of optimal block sizes.

1.2 Contributions

A detailed model of cache behaviour can give accurate information to compilers or programmers
to optimize codes. However, this is a really demanding task, especially in respect of giving
feedback to guide code transformations. This thesis o�ers some advance in automation of code
optimization, focusing on the application of non-linear layouts in numerical codes. The opti-
mization algorithm takes into account cache parameters, in order to determine best processing
sizes that match the memory hierarchy characteristics of each speci�c platform.

The primary contributions of this thesis are:

• The proposal of a fast indexing scheme that makes the performance of blocked data layouts
e�cient. We succeed in increasing the e�ectiveness of such layouts when applied to complex
numerical codes, in combination with loop tiling transformation. The provided framework
can be integrated in a static tool, like compiler optimizations.

• The proposal of a simple heuristic to make one-level tiling size decisions easy. It outlines
the convergence point of factors that a�ect or determine the performance of the multiple
hierarchical memory levels.

8 Introduction

• A study of the e�ects of multiple code optimization methods in di�erent machines. This
study matches speci�c optimizations with hardware characteristics, tracking down weak-
nesses that can be healed when pipeline is being fed by an appropriate stream of instruc-
tions.

1.3 Thesis Overview

This work is organized as follows:

Chapter 2 gives some background about memory hierarchy organization and basic cache
memory characteristics. We present the terminology of code optimization techniques used in
this work. Finally, we provide an introduction about loop tiling and transformations.

Chapter 3 presents the underlying model on which this work is based, that is pre-existing
non-linear array layouts. Then, the proposed blocked array layouts are analytically described,
combined with a fast indexing scheme. A system of binary masks has been developed, which is
used to pick up data elements of multidimensional arrays in the one dimensional storage order.

Chapter 4 analyzes the cache behavior when tiled codes with blocked array layouts are being
executed. The best tile size that utilizes the cache capacity and deters con
ict misses is being
calculated as the convergence point of all factors (cache misses and latency of multiple cache
levels and TLBs, and branch miss penalty) that a�ect cache performance.

Chapter 5 outlines the framework of Simultaneous Multithreading (SMT) micro-architecture
and discusses implementation and synchronization issues. It also explores the performance
limits of simultaneously executed instruction streams, using homogeneous instruction streams,
executed in parallel.

Chapter 6 presents experimental and simulation results on various platforms, evaluating
blocked array layouts versus other non-linear array layouts, the tile selection technique and the
performance of Simultaneous Multithreading on optimized codes.

Finally, chapter 7 gives the conclusion remarks.

1.4 Publications

INTERNATIONAL CONFERENCES

• Evangelia Athanasaki, Nikos Anastopoulos, Kornilios Kourtis and Nectarios Koziris. Ex-
ploring the Capacity of a Modern SMT Architecture to Deliver High Scienti�c Application
Performance. In Proc. of the 2006 International Conference on High Performance Com-
puting and Communications (HPCC-06), pages , Munich, Germany, Sep 2006. Lecture
Notes in Computer Science.

1.4 Publications 9

• Evangelia Athanasaki, Nikos Anastopoulos, Kornilios Kourtis and Nectarios Koziris. Ex-
ploring the Performance Limits of Simultaneous Multithreading for Scienti�c Codes. In
Proc. of the 2006 International Conference on Parallel Processsing (ICPP-06), pages ,
Columbus, OH, Aug 2006. IEEE Computer Society Press.

• Evangelia Athanasaki, Nikos Anastopoulos, Kornilios Kourtis and Nectarios Koziris. Tun-
ing Blocked Array Layouts to Exploit Memory Hierarchy in SMT Architectures. In Proc.
of the 10th Panhellenic Conference in Informatics, pages , Volos, Greece, Nov 2005. Lec-
ture Notes in Computer Science.

• Evangelia Athanasaki, Nectarios Koziris and Panayiotis Tsanakas. A Tile Size Selection
Analysis for Blocked Array Layouts. In Proc. of the 9-th Workshop on Interaction
between Compilers and Computer Architectures (INTERACT-9), In conjuction with the
11th International Symposium on High-Performance Computer Architecture (HPCA-11),
pages 70{80, San Francisco, CA, Feb 2005. IEEE Computer Society Press.

• Evangelia Athanasaki and Nectarios Koziris. Fast Indexing for Blocked Array Layouts
to Improve Multi-Level Cache Locality. In Proc. of the 8-th Workshop on Interaction
between Compilers and Computer Architectures (INTERACT-8), In conjuction with the
10th International Symposium on High-Performance Computer Architecture (HPCA-10),
pages 109{119, Madrid, Spain, Feb 2004. IEEE Computer Society Press.

• Evangelia Athanasaki and Nectarios Koziris. Improving Cache Locality with Blocked
Array Layouts. In Proceedings of the 12-th Euromicro Conference on Parallel, Distributed
and Network based Processing (PDP'04), pages 308{317, A Coruna, Spain, Feb. 2004.
IEEE Computer Society Press.

• Evangelia Athanasaki and Nectarios Koziris. Blocked Array Layouts for Multilevel Mem-
ory Hierarchies. In Proceedings of the 9th Panhellenic Conference in Informatics, pages
193{207, Thessaloniki, Greece, Nov. 2003.

INTERNATIONAL JOURNALS

• Evangelia Athanasaki and Nectarios Koziris. Fast Indexing for Blocked Array Layouts
to Reduce Cache Misses. International Journal of High Performance Computing and
Networking (IJHPCN), 3(5/6): 417{433, 2005.

• Evangelia Athanasaki, Nikos Anastopoulos, Kornilios Kourtis and Nectarios Koziris. Ex-
ploring the Performance Limits of Simultaneous Multithreading for Memory Intensive
Applications. The Journal of Supercomputing, submitted.

10 Introduction

CHAPTER 2
Basic Concepts

This chapter provides a background about memory hierarchy issues: basic characteristics and
organization. We, also, provide the de�nitions for data locality and reuse, the fundamental
principles of cache design. Finally, we present an introduction to loop tiling and other loop and
data transformations.

2.1 Memory Hierarchy

The memory system is organized hierarchically. One end is disk storage, with high storage
density, low structural cost per bit, and a relative low access rate. On the other end of hierarchy,
is the register �le, which has low storage capacity, high structural cost and low latency. Two
important levels of the memory hierarchy are the cache and virtual memory.

Figure 2.1 illustrates the levels in a typical memory hierarchy. Drawing farther away from
the CPU, the memory levels become larger, slower and more expensive.

To weight up the e�ectiveness of the memory hierarchy, the following formula should be
evaluated:

Memory stall cycles = IC × Mem Refs × Miss Rate × Miss Penalty

where IC = Instruction count
Mem Refs = Average Memory References per Instruction
Miss Rate = the fraction of accesses that do not hit in the cache
Miss Penalty = the time needed to service a miss

Cache memory is a special high-speed storage mechanism made of static random access
memory (SRAM) instead of the slower and cheaper dynamic RAM (DRAM) used for main
memory. Cache memories are placed hierarhically between the CPU and the main memory.
A current computing system contains more than just one level of cache, described in levels of

12 Basic Concepts

Part of the On-chip
CPU Datapath
16-256 Registers

Drawing away
from the CPU :

Decreased
cost/Bit
Increased
capacity
Increased
latency
Decreased
bandwidthDynamic RAM (DRAM)

16M - 16G

Registers

Cache

Main Memory

Magnetic Disc

Optical Disc or Magnetic Tape

Static RAM
(one or more levels)

 L1: On-chip 16-64K
 L2: On/Off-chip 128-512K
 L3: Off-chip 128K-8M

Interface:
SCSI, RAID, IDE

4G - 200G

Figure 2.1: The Memory Hierarchy pyramid

proximity and accessibility to the microprocessor. An L1 (level 1) cache is usually built into
the processor chip, while L2 (level 2) is usually a separate static RAM (SRAM) chip. As the
microprocessor processes data, if the requested information are not found in the register �le, it
looks �rst in the cache memory. Caches contain only a small portion of the information stored
in main memory. Given that cache latency is much lower than that of other memory levels, we
can have a signi�cant performance improvement if a previous reading of data has brought the
requested data in the cache. This way, there is no need for the time-consuming access of remote
memory levels. The above principles suggest that we should try to preserve recently accessed
and frequently used instructions and data in the fastest memory level.

Programs tend to reuse data and instructions they have used recently: \A program spends
90% of its time in 10% of its code". Thus, we have to exploit data locality, in order to improve
performance. An implication of locality is that we can predict with reasonable accuracy what
instructions and data a program will use in the near future based on its accesses in the recent
past.

Two di�erent types of locality have been observed:

• Temporal locality: states that recently accessed items are likely to be accessed in the near
future. If accessed words are placed in the cache, waste of time (due to memory latency)
will be averted when they are reused.

• Spatial locality: states that items whose addresses are near one another tend to be refer-
enced close together in time. As a result, it is advantageous to organize memory words in
blocks so that whenever there is access to a word, the whole block will be transferred in
the cache, not just one word.

2.2 Cache misses 13

During a memory reference, a request for speci�c data can be satis�ed from the cache without
using the main memory, when the requested memory address is present in cache. This situation
is known as a cache hit. The opposite situation, when the cache is consulted and found not to
contain the desired data, is known as a cache miss. In the latter case, the block of data (where
the requested element belongs), is usually inserted into the cache, ready for the next access.
This block is the smaller amount of elements that can be transferred from one memory level to
another. This block of data is alternatively called cache line.

Memory latency and bandwidth are the two key factors that determine the time needed to
resolve a cache miss. Memory latency speci�es the intermediate time between the data request
to main memory and the arrival into the cache of the �rst data element in the requested block.
Memory bandwidth speci�es the arrival rate of the remaining elements in the requested block.
A cache miss resolution is critical, because the processor has to stall until the requested data
arrive from main memory (especially in an in-order execution).

2.2 Cache misses

Cache memories were designed to keep the most recently used piece of content (either a program
instruction or data). However, it is not feasible to satisfy all data requests. In a case of a cache
miss in instruction cache, the processor stall is resolved when the requested instruction is fetched
from main memory. A cache read miss (data load instruction) can be less severe as there can
be other instructions not dependant on the expected data element. Execution is continued until
the operation which really needs the loaded data is ready to be executed. However, data is often
used immediately after the load instruction. The last case is a cache write miss, it is the least
serious miss because there are write bu�ers usually, to store data until they are transferred to
main memory or a block is allocated in the cache. The processor can continue until the bu�er
is full.

In order to lower cache miss rate, a great deal of analysis has been done on cache behavior in
an attempt to �nd the best combination of size, associativity, block size, and so on. Sequences of
memory references performed by benchmark programs are saved as address traces. Subsequent
analysis simulates many di�erent possible cache designs on these long address traces. Making
sense of how the many variables a�ect the cache hit rate can be quite confusing. One signi�cant
contribution to this analysis was made by Mark Hill, who separated misses into three categories
(known as the Three Cs):

There are three di�erent types of cache misses.

• Compulsory misses: are those misses caused by the very �rst reference to a block of
data. They are alternatively called cold-start or �rst-reference misses. Cache capacity
and associativity do not a�ect the number of compulsory misses that come up by an

14 Basic Concepts

application execution. Larger cache block sizes, and software optimization techniques,
such as prefetching, can help at this point (as we will see later in this chapter).

• Capacity misses: are those misses which a cache of a given size will have, regardless of its
associativity or block size. The curve of capacity miss rate versus cache size gives some
measure of the temporal locality of a particular reference stream: if cache capacity is not
enough to hold the total amount of data being reused by the instruction stream executed,
then useful data should be withdrawn from the cache. The next reference to them, brings
on capacity misses.

Increasing the cache size could be bene�cial for capacity misses. However, such an en-
largement aggravates structural cost. Over-and-above, a large cache size would result to
in
ation of access time, that is, cache hit latency. To counterbalance the capacity con-
straints of just a single cache level, memory systems are equipped with two or three levels
of caches. The �rst cache level is integrated in the processor chip, for low latency, and
is chosen to have a small size, while other cache levels are placed o� chip, with greater
capacity.

• Con
ict misses: are those misses that could have been avoided, had the cache not evicted
an entry earlier. A con
ict miss can occur even if there is available space in the cache. It
is the result of a claim for the same cache line, by two di�erent blocks of data. Con
ict
misses can be further broken down into mapping misses, which are unavoidable given a
particular amount of associativity, and replacement misses, which are due to the particular
victim choice of the replacement policy.

Another classi�cation concerns data references to array structures. Self con
ict misses are
con
ict misses between elements of the same array. Cross-con
ict misses take place when
there is con
ict between elements of di�erent arrays.

2.3 Cache Organization

Cache memories can have di�erent organizations, according to the location in the cache where
a block can be placed:

• Direct mapped cache: A given block of memory elements can appear in one single place in
cache. This place is determined by the block address:

(cache line mapped) = (Block address) MOD (Number of blocks in cache)

Direct mapped organization is simple and data retrieval is straightforward. This e�ectively
reduces hit time and allows large cache sizes. On the other hand, direct mapping can not
avert con
ict misses, even if the cache capacity can support higher hit rates. Hence, fast

2.3 Cache Organization 15

processor clocks favor this organization for �st-level caches, that should be kept small in
size.

• Fully Associative cache: A given block of memory elements can reside anywhere in cache.

This mapping reduces miss rate because it eliminates con
ict misses. Of course, increased
associativity comes at a cost. This is the increase of hit time and the high structural
cost. However, even if fast processor clocks favor simple caches for on-chip caches, as we
draw away from processor chip to higher-level caches, increasing of miss penalty rewards
associativity.

• N-way Set Associative cache: A set associative organization de�nes that cache is divided
into sets of N cache lines. A given block of memory can be placed anywhere within a single
set. This set is determined by the block address:

(set mapped) = (Block address) MOD (Number of sets in cache)

A direct mapped cache can be considered as an 1-way set associative cache, while a fully as-
sociative cache with capacity of M cache lines can be considered as a M-way set associative
cache.

As far as cache performance is considered, an 8-way set associative cache has, in essence,
the same miss rate as a fully associative cache.

2.3.1 Pseudo-associative caches

Another approach to improve miss rates without a�ecting the processor clock is pseudo-associative
caches. This mechanism is so e�ective as 2-way associativity. Pseudo-associative caches then
have one fast and one slow hit time -corresponding to a regular hit and a pseudo hit. On a hit,
pseudo-associative caches work just like direct mapped caches. When a miss occurs in the direct
mapped entry, an alternate entry (the index with the highest index bit
ipped) is checked. A hit
to the alternate entry (pseudo-hit) requires an extra cycle. This pseudo-hit results in the two
entries being swapped, so that the next access to the same line would be a fast access. A miss
in both entries (fast and alternative) causes an eviction of whichever of the two lines is LRU.
The new data is always placed in the fast index, so if the alternate index was evicted, the line
in the fast index will need to be moved to the alternate index. So a regular hit takes no extra
cycles, a pseudo-hit takes 1 cycle, and access to the L2 and main memory takes 1 cycle longer
in a system with a pseudo-associative cache than in one without.

2.3.2 Victim Caches

Cache con
icts can be addressed in the hardware through associativity of some form. While
associativity has the advantage of reducing con
icts by allowing locations to map to multiple

16 Basic Concepts

cache entries, it has the disadvantage of slowing down cache access rates due to added complexity.
Therefore minimizing the degree of associativity is an important concern. One option is to have
a set-associative primary cache, where addresses are mapped to N-way associative sets. Another
approach is to keep the �rst level cache direct-mapped but also add a victim cache o� to the side.
The goal is to make the victim cache transparent to system so the �rst level cache thinks it is
requesting directly to the DRAM. Victim caching places a small fully-associative cache between
the �rst level cache and its re�ll path. This small fully-associative cache is loaded with the
victims of a miss in the L1 cache. In the case of a miss in L1 cache that hits in the victim cache,
the contents of the L1 cache line and the matching victim cache line are swapped. Misses in
the cache that hit in the victim cache have only a one cycle miss penalty, as opposed to a many
cycle miss penalty without the victim cache. The victim cache approach is appealing because
it is tailored to cases where data are reused shortly after being displaced-this is precisely what
happens with prefetching con
icts.

According to measurement [Jou90], a 4-entry victim cache removes 20%-95% of con
ict
misses for a 4 KByte direct mapped data cache. Typically a small fully associated victim cache
is used with a direct mapped main (�rst level) cache. The victim cache usually uses a FIFO
(�rst in, �rst out) replacement policy. The reason for using FIFO instead of random is that
random replacement is more e�ective for larger cache sizes. The small size of the victim cache
makes it probable that certain cache blocks will be replaced more often. A FIFO replacement
policy ensures each block has the same chance to be replaced. Theoretically a LRU is the best
replacement policy, but is too di�cult to implement with more than two sets.

2.3.3 Prefetching

Victim caches and pseudo-associativity both promise to improve miss rates without a�ecting
the processor clock rate. Prefetching is another technique that predicts soon-to-be used instruc-
tions or data and loads them into the cache before they are accessed. Subsequently, when the
prefetched instructions or data are accessed there is a cache hit, rather than a miss.

A commonly used method is sequential prefetching, according to which it is predicted that
data or instructions immediately following those currently accessed, will be needed in the near
future and should be prefetched. Sequential prefetching fetches a memory block that caused a
cache miss, along with the next n consecutive cache blocks. It can be more or less \aggressive"
depending on how far ahead in the access stream it attempts to run - that is, how large n is.

Both instructions and data can be prefetched, either directly into the caches or into an
external bu�er that can be more quickly accessed than main memory. An example of this is the
Intel Xeon Pentium 4 processor, which can perform both software and hardware prefetching.
The hardware prefetcher requires a couple of misses before it starts operating. It will attempt to
prefetch two cache lines ahead of the prefetch stream into the uni�ed second-level cache based
on prior reference patterns. In a cache miss, the hardware mechanism fetches the adjacent

2.4 Cache replacement policies 17

cache line within an 128-byte sector that contains the data needed. There is also a software
controlled mechanism that fetches data into the caches using prefetch instructions. The hardware
instruction fetcher reads instructions that are likely to be executed along the path predicted by
the branch target bu�er (BTB) into instruction streaming bu�ers.

Although usually bene�cial, prefetching, especially aggressive prefetching may reduce per-
formance. In some cases prefetched data or instructions may not actually be used, but will still
consume system resources - memory bandwidth and cache space. It is possible that a prefetch
will result in useless instructions or data replacing other instructions or data in the cache that
will soon be needed. This e�ect is referred to as cache pollution. The e�ects of cache pollu-
tion most often increase as prefetching becomes more aggressive. Another prevalent e�ect of
aggressive prefetching is bus contention. Bus contention occurs when multiple memory accesses
have to compete to transfer data on the system bus. This e�ect can create a scenario where a
demand-fetch is forced to wait for the completion of a useless prefetch, further increasing the
number of cycles the processor is kept idle.

On average, hardware prefetching bene�ts performance and works with existing applications,
without requiring extensive study of prefetch instructions. However it may not be optimal for
any particular program especially for irregular access patterns and has a start-up penalty before
the hardware prefetcher triggers and begins initiating fetches. This start-up delay has a larger
e�ect for short arrays when hardware prefetching generates a request for data beyond the end
of an array (not actually utilized). There is a software alternative to hardware prefetching,
the compiler-controlled prefetching - the compiler requests the data before it is needed. This
technique can improve memory access time signi�cantly, even irregular access patterns, if the
compiler is well implemented and can avoid references that are likely to be cache misses. However
it requires new instructions to be added which results to issuing port bandwidth overhead.

2.4 Cache replacement policies

When a cache miss occurs, the desired data element should be retrieved from memory and
placed in a cache location, according to the cache mapping organization. This may result in the
eviction of another blocked data stored in the same location. In direct mapping, there exists
only a single candidate. In set associative and fully associative mappings more than one cache
lines are candidate for eviction. The cache line selection is critical, as it a�ects performance.
Which block should be replaced is determined by a replacement policy:

The primary strategies used in practice are:

• Random: Candidate cache lines are randomly selected. It counts on the principle of
uniform propagation of cache line allocation due to fortuity of selection. This strategy is
simple to implement in hardware, but passes over the locality of references.

18 Basic Concepts

• Least-Recently Used (LRU): The candidate block is the one that has been left unused
for the longest time. It implements the principle of locality, avoiding to discard blocks
of data that have increased probability to be needed soon. This strategy keeps track of
block accesses. Hence, when the number of blocks increases, LRU becomes more expensive
(harder to implement, slower and often just approximated).

Other strategies that have been used are:

• First In First Out (FIFO)

• Most-Recently Used (MRU)

• Least-Frequently Used (LFU)

• Most-Frequently Used (MFU)

2.5 Write policies

Special care should be taken when an instruction writes to memory. In the common case, that is
in a read cache access, the block can be read at the same time that the tag is read and compared.
So the block read begins as soon as the block address is available. This is not the case for writes.
Modifying a block cannot begin until the tag is checked to see if the address is a hit.

The write policies on write hit are:

• Write Through: The modi�ed item is written to the corresponding blocks in all memory
levels.

This is an easy to implement strategy. Main memory is always the consistency point: it
has the most current copy of the data. As a result, read miss never results in writes to
main memory. On the other hand, writes are slow. Every write draws a main memory
access and memory bandwidth is spent.

• Write back: The modi�ed item is written only to the block in the cache, setting \dirty"
bit for this block. The whole cache block is written to main memory only when the cache
line is replaced.

In this strategy the consistency point is the cache. As a result, read misses which replace
other blocks in the cache, draw writes of dirty blocks to main memory. On the other
hand, writes are completed e�ciently, at cache hit time. Moreover, this will eliminate
extra memory accesses, as multiple writes within a block require only one write to main
memory, which results to less memory bandwidth.

In case of a write miss there are two common options:

2.6 Virtual Memory 19

• Write Allocate: The block is loaded into the cache and is updated with the modi�ed data
afterwards.

• No Write Allocate: Write instructions do not a�ect the cache. The modi�ed data updates
the block in main memory but this block is never brought into the cache.

Although either write-miss policy could be used with write through or write back, write-back
caches generally use write allocate (hoping that subsequent writes to that block will be captured
by the cache) and write-through caches often use no-write allocate (since subsequent writes to
that block will still have to go to memory).

2.6 Virtual Memory

The whole amount of data that are accessed by an application program can not always �t in
the main memory. This was the reason that virtual memory was invented, to allow some of the
data remain in hard drives. The address space is divided to blocks, called pages. Each page of
a program are stored either in main memory or in the hard drive. When the processor calls for
data that can not be found either in the cache or in the main memory, then a page fault occurs.
Then, the whole page has to be transferred from hard drive to main memory. The page fault
resolution lasts for a signi�cant large time space. So, it is handled by the operating system,
while another process is being executed.

A
B
C
D

C

A

B

0
4K
8K
12K

0
4K
8K
12K
16K
20K
24K
28K

Virtual
Address:

Physical
Address:

Virtual
Memory

Physical
Main Memory

Continuous space
of a program virtual

addresses
Physical block
locations of
A, B, C, D

D

Disk

Figure 2.2: Virtual Memory

The processor generates virtual addresses while the memory is accessed using physical ad-
dresses. Every virtual page is mapped to a physical page through a mapping table called page

20 Basic Concepts

table. Of course, it is possible for a virtual page to be absent from main memory and not be
mapped to a physical address as soon, residing instead on disk. Physical pages can be shared
by having two virtual addresses point to the same physical address. This capability is used to
allow two di�erent programs to share data and code.

Page tables contain a large number of entries. Hence, they are stored in main memory.
Translation Lookaside Bu�er (TLB) holds entries only for the most recently accessed pages and
only for valid pages. It is a special purpose cache, invented to deter main memory access for
every address translation. Fully associative organization is usually applied to TLBs.

2.7 Iteration Space

Each iteration of a nested loop of depth n is represented by an n-dimensional vector:
~j = (j1, . . . , jn)

Each vector coordinate is related with one of the loops. The leftmost coordinate (j1) is
related to the outer loop, while the rightmost coordinate (jn) is related to the inner loop.

Iteration space of a nested loop of depth n is an n-dimensional polyhedron, which is taken
in the boundaries of the n loops. Every point of this n-dimensional space is a distinct iteration
of the loop body. The iteration space is represented as follows:

Jn = {~j(j1, . . . , jn) | ji ∈ Z ∧ li ≤ ji ≤ ui, 1 ≤ i ≤ n}

2.8 Data dependencies

Data dependencies arise when two memory references access the same memory location. Such
a dependency can be:

• True Data Dependence: The �rst reference writes in a memory location while the second
wants to read the new value.

• Anti-dependence: The �rst reference reads from a memory location while the second wants
to write in it.

• Output Dependence: Both references write in the same memory location.

• Input Dependence: Both references read from the same memory location.

On a code transformation, we should preserve relative iteration order which is determined
by the �rst three kind of dependencies. Otherwise, code results will be wrong. Overlooking
the input dependencies does not bring any wrong results. However, they should be taken into
account when evaluating data reuse

2.9 Data Reuse 21

Dependence Vector of a nested loop iteration is the di�erence between two vectors: the vector
~j = (j1, . . . , jn), that represents the iteration in issue, and the vector ~j′ = (j1

′, . . . , jn
′), that

represents the dependent iteration (the results of iteration ~j′ are directly used in processing of
iteration ~j).

Every dependence vector is represented by an n-dimensional vector: ~di = (di1, . . . , din).

2.9 Data Reuse

Since transformations change iteration order, identifying reuse, guides transformations to exploit
locality. In some cases we need to evaluate di�erent kinds of reuse, in order to �nd the best
combination of transformations [WL91].

There are four di�erent types of reuse.

In order to better explain the di�erent types of reuse, we will use the following nested
loop, as an example:

for (i = 0; i <= N ; i + +)
for (j = 0; j <= N ; j + +)
for (k = 0; k <= N ; k + +)

C[i][j] = A[i][k] ∗B[k][j] + A[i][k + 1] ∗B[k + 1][j];

• Self-temporal reuse: A reference within a loop accesses the same data element in di�erent
iterations.

Self-temporal reuse occurs in reference C[i][j] along loop k. Similarly, references A[i][k],
A[i][k + 1] have self-temporal reuse in loop j and references B[k][j], B[k + 1][j] have self-
temporal reuse in loop i.

• Self-spatial reuse: A reference accesses data of the same cache line in di�erent iterations.

In the above example, self-spatial reuse occurs in references A[i][k], A[i][k + 1] along loop
k, in references B[k][j], B[k + 1][j] along loop j and in reference C[i][j] along loop j.
However, if N is quite large, spatial reuse can only be exploited along the innermost loop
k, because critical cache lines will have been evicted from the cache, when array references
will ask for them. When tiling (see section 2.10) is applied, choosing tiles sizes that �t in
the cache, reuse can be exploited in all three innermost loops (i, j, k).

• Group-temporal reuse: Di�erent references access the same data element.

22 Basic Concepts

In the above example, group-temporal reuse exists between references A[i][k] and A[i][k+1]

of the previous k iteration. Similarly, reference B[k][j] uses the same data as B[k + 1][j]

of the previous k iteration.

• Group-spatial reuse: Di�erent references access the same cache line.

In the above example, group-spatial reuse exists between references A[i][k] and A[i][k + 1]

in each iteration, because they access neighboring data. On the other hand, there is no
group-spatial reuse between references B[k][j] and B[k+1][j], as loop k controls the column
dimension of B (we assume that the C storage order is followed, that is row-major).

2.10 Loop Transformations

Iterative instruction streams are usually the most time and memory consuming parts of a pro-
gram. Thus, a lot of compiler analysis and optimization techniques have been developed to make
the execution of such streams faster. Nested loops are usually the most common form of iterative
instruction streams. Loop transformations play an important role in improving cache perfor-
mance and e�ective use of parallel processing capabilities. In this thesis we focus on n-nested
loops, which contain references to n-dimensional array data. Loop and data transformations
aim at enhancing code performance by changing data access order and arrangement of the data
in address space, to improve data locality.

Data layout optimizations [CL95], [RT98a], [KRC99] rearrange the allocation of data in
memory, enhancing code performance by improving spatial locality and avoiding con
ict misses.
Increased spatial locality can reduce the working set of a program (the number of pages ac-
cessed) or can minimize reuse distance to avoid eviction of data from the cache once they have
been loaded into it. Con
ict misses is also a determinant factor of performance. A signi�cant
percentage of the whole program cache misses is evoked due to con
icts in the cache. Data
layout optimization techniques include modi�cation of the mapping distance between variables
or rearrange of structure �elds, change of the array dimension sizes, interchange of array di-
mensions, and linearizing multi-dimensional arrays. Data alignment and array padding are such
transformations that put additional (null) elements among useful data in order to change map-
ping of these data to the cache. Transformations of array layouts is also an important category.
A special case, non-linear array layouts, will be presented analytically in chapter 3.

Code (loop) transformations change the execution order of iterations, to better exploit data
reuse and memory hierarchy. Most cases need a combination of such transformations, to achieve
best performance. These techniques include:

• Induction variable elimination: Some loops contain two or more induction variables
that can be combined into one induction variable. Induction variable elimination can
reduce the number of operations in a loop and improve code space.

2.10 Loop Transformations 23

• Copy propagation: propagates the right content of an assignment statement to the
places where the left argument appears (until one or the other of the variables involved in
the statement is reassigned). This optimization tries to eliminate useless copy assignments
in code. It is a useful \clean up" optimization frequently used after other optimizations
have already been run.

• Constant propagation: It is an optimization usually applied during compilation time.
If a particular constant value is known to be assigned to a variable at a particular point in
the program, references to this variable can be substituted with that constant value. This
is similar to copy propagation, except that it applies to eliminating useless assignment
operations involving constants.

• Dead code elimination: Removes all unused code (unreachable or that does not a�ect
the program).

• Constant folding: Expressions with constant (literal) values can be evaluated at compile
time and simpli�ed to a constant result value. Thus, run-time performance is improved
by reducing code size and avoiding evaluation at compile-time. Particularly useful when
constant propagation is performed.

• Forward Store: Stores to global variables in loops can be moved out of the loop to reduce
memory bandwidth requirements.

• Function Inlining: The overhead associated with calling and returning from a function
can be eliminated by expanding the body of the function inline, and additional opportu-
nities for optimization may be exposed as well. Function inlining usually increases code
space, which is a�ected by the size of the inlined function, the number of call sites that are
inlined, and the opportunities for additional optimizations after inlining. Some compilers
can only inline functions that have already been de�ned in the �le; some compilers parse
the entire �le �rst, so that functions de�ned after a call site can also be inlined; still other
compilers can inline functions that are de�ned in separate �les.

• Code hoisting and sinking: If the same code sequence appears in two or more alterna-
tive execution paths, the code may be hoisted to a common ancestor or sunk to a common
successor. This reduces code size, but does not reduce instruction count. Another inter-
pretation of hoisting for loop-invariant expressions is to hoist the expressions out of loops,
thus improving run-time performance by executing the expression only once rather than
at each iteration.

• Instruction combining: Sometimes, two statements can be combined into one state-
ment. Loop unrolling can provide additional opportunities for instruction combining.

24 Basic Concepts

• Forward expression substitution: Substitutes the left variable of an assignment ex-
pression to the places where the left argument appears with the expression itself. This
substitution needs control
ow analysis, to guarantee that the de�nition is always executed
before the statement into which it is substituted.

• Register allocation: There are two types of register allocation: Local - Within a ba-
sic block (a straight line sequence of code) tracks register contents, allocates values into
registers, and reuses variables and constants from registers. This can also avoid unneces-
sary register-register copies. Global - Within a sub-program, frequently (using weighted
counts) accessed variables and constants, used in more than one basic block, are allocated
to registers. Usually there are many more register candidates than available registers.

• Unswitching: A loop containing a loop-invariant if statement can be transformed into an
if statement containing two loops. After unswitching, the if expression is only executed
once, thus improving run-time performance.

A special case of loop transformations is compound transformations, consisting of loop per-
mutation, loop fusion, loop distribution, and loop reversal.

In the following, (where a special code is not presented) we will use the example code
found below.

for (i = 0; i <= N ; i + +)
for (j = i + 1; j <= N ; j + +)

A[j][i] = . . . ;

• Loop Normalization

The loop normalization consists of transforming all the loops of a given module into a
normal form. In this normal form, the lower bound and the increment are equal to one
(1).

If the initial loop is:

for (i = lower; i <= upper; i+ = increment)
. . .

the transformation gives the following code:

2.10 Loop Transformations 25

for (NLi = 1;NLi <= ceiling(upper − lower + 1)/increment; NLi + +)
{

i = increment ∗NLi + lower − increment;
. . .

}

The normalization is done only if the initial increment is a constant number. The normal-
ization produces two assignment statements on the initial loop index. The �rst one (at
the beginning of the loop body) assigns it to its value function of the new index and the
second one (after the end of the loop) assigns it to its �nal value

• Loop Reversal

Loop reversal reverses the order in which the iterations of a loop nest are executed and is
legal if dependencies remain unchanged (they are still carried on outer loops). Reversal
does not change the pattern of reuse, but makes other transformations operational, i.e., it
may enable permutation to achieve better locality.

The unimodular matrix that declares loop reversal of the example code is:

T =

[
1 0

0 −1

]

The resulting code is:

for (i = 0; i <= N ; i + +)
for (j = −N ; j <= −i− 1; j + +)

A[j][i] = . . . ;

• Loop Interchange or Permutation

Changes the nesting order of some or all loops. This can minimize the stride of array
element access during loop execution and reduce the number of memory accesses needed.
To determine the loop permutation which accesses the fewest cache lines, the following ob-
servation should be taken into account. If loop i promotes more reuse than loop j (accesses
to array data by successive iterations of loop i follow the storage order for more references
than by successive iterations of loop j) when both are considered for the innermost loop,
i will likely be nested inside loop j, if permissible.

26 Basic Concepts

The following unimodular matrix speci�es the interchange of our example code:

T =

[
0 1

1 0

]

The resulting code is:

for (j = 1; j <= N ; j + +)
for (i = 0; i <= j − 1; i + +)

A[j][i] = . . . ;

• Loop Skewing

This transformation changes the iteration space shape . After applying loop skewing, the
iteration space is no longer orthogonal or square, but trapezoidal. It does not optimize
the code performance on its own, but makes other kind of transformations permissible.
On the other hand, in some cases the loop boundaries become complicated, so that they
are too time-consuming to be calculated. For this reason, loop skewing has to be applied
only if necessary, as it can worsen performance, instead of boosting it.

The unimodular matrix that describes loop skewing is:

T =

[
1 f

0 1

]
or T =

[
1 0

f 1

]

If we skew the loops using the unimodular matrix:

T =

[
1 0

−1 1

]

The resulting example code is:

for (i = 0; i <= N ; i + +)
for (j = 1; j <= N − i; j + +)

A[j][i] = . . . ;

2.10 Loop Transformations 27

• Loop Distribution

Moves independent statements in one loop into multiple, new loops. This transformation
is used in cases where there is a large number of instructions and data in a single loop.
This can reduce the amount of memory space (working set) used during each loop so that
the remaining data may �t in the cache, reducing the probability of capacity and con
ict
misses. It can also create improved opportunities for loop blocking.

Regarding the initial code:

for (i = 0; i <= N ; i + +)
for (j = 1; j <= N − i; j + +) {

A[j][i] = . . . ;
D[i][j] = . . . ; }

The resulting example code is:

for (i = 0; i <= N ; i + +)
for (j = 1; j <= N − i; j + +)

A[j][i] = . . . ;
for (i = 0; i <= N ; i + +)
for (j = 1; j <= N − i; j + +)

D[i][j] = . . . ;

• Loop Fusion

Combines the bodies from two or more adjacent loops that use some of the same memory
locations into a single loop. It is legal only if no data dependencies are reversed. This can
avoid the need to load those memory locations into the cache multiple times and improves
opportunities for instruction scheduling. Although loop fusion reduces loop overhead,
it should be applied with care, as it does not always improve run-time performance, or
may even reduce performance. For example, a memory architecture may provide better
performance if two arrays are initialized in separate loops, rather than initializing both
arrays simultaneously in one loop.

Regarding the initial code:

28 Basic Concepts

for (i = 0; i <= N ; i + +)
for (j = 1; j <= N − i; j + +)

A[i][j] = B[i][j] ∗ C[j];
for (i = 0; i <= N ; i + +)
for (j = 1; j <= N − i; j + +)

D[i][j] = A[i][j] ∗ C[j];

The resulting example code is:

for (i = 0; i <= N; i + +)
for (j = 1; j <= N − i; j + +) {

A[i][j] = B[i][j] ∗ C[j];
D[i][j] = A[i][j] ∗ C[j];

}

• Scalar Replacement

Replaces the use of an array element with a scalar variable under certain conditions. It
gives the capability of assigning scalars to registers, to keep their content close to the
processor for fast access.

Regarding the initial code:

for (i = 0; i <= N; i + +)
for (j = 1; j <= N − i; j + +)

A[i] += B[i][j] ∗ C[j];

The resulting example code is:

for (i = 0; i <= N; i + +) {
reg var = A[i];
for (j = 1; j <= N − i; j + +)

reg var += B[i][j] ∗ C[j];
A[i] = reg var;

}

• Outer Loop Unrolling

Unrolling the outer or inner loops replicates the body of the loop, to minimize the number
of instructions and memory accesses needed. This also improves opportunities for instruc-
tion level parallelism and scalar replacement. Finally, it reduces the number of iterations,
minimizing loop overhead due to latencies introduced by mispredicted branches.

2.10 Loop Transformations 29

In the example code, the body of the example loop is replicated once and the
number of loop iterations is reduced from N to N/2. Below is the code fragment
after loop unrolling.

for (i = 0; i <= N ; i + +)
for (j = i + 1; j <= N ; j+ = 2)
{

A[i][j] = . . . ;
A[i][j + 1] = . . . ;

}

• Loop Tiling (blocking)

It splits the initial iteration space Jn into n-dimensional iteration spaces, called tiles. This
transformation reduces the working set of inner loops (number of instructions included in
a tile). It can maximize data reuse of multidimensional array elements by completing as
many operations as possible on array elements currently in the cache.

Below is the example code after loop tiling.

for (ii = 0; ii <= N ; ii+ = tile stepi)
for (jj = ii; jj <= N ; jj+ = tile stepj)
for (i = ii; i < ii + tile stepi; i + +)
for (j = max(i + 1, jj); j <= jj + tile stepj; j + +)

A[i][j] = . . . ;

30 Basic Concepts

CHAPTER 3
Fast Indexing for Blocked Array

Layouts

This chapter proposes a new method to perform blocked array layouts combined with a fast
indexing scheme for numerical codes. We use static loop performance analysis to specify the
optimal loop nesting order and legal transformations (including tiling) that give the best recom-
position of iterations. Array elements are stored exactly as they are swept by the tiled instruction
stream in a blocked layout. We �nally apply our e�cient indexing to the resulting optimized
code, to easily translate multi-dimensional indexing of arrays into their blocked memory layout
using quick and simple binary-mask operations.

The remainder of this chapter is organized as follows: Section 3.1 brie
y discusses the prob-
lem of data locality using as example the typical matrix multiplication algorithm. Section 3.2
reviews de�nitions related to Morton ordering. Section 3.3 presents previously proposed non-
linear array layouts, as well as our blocked array layouts along with our e�cient array indexing.
Finally, concluding remarks are presented in Section 3.4.

3.1 The problem: Improving cache locality for array computa-

tions

In this section, we elaborate on the necessity for both control (loop) and data transformations,
to fully exploit data locality. We present, stepwise, all optimization phases to improve locality
of references with the aid of the typical matrix multiplication kernel.

1. unoptimized version

32 Fast Indexing for Blocked Array Layouts

for (i = 0; i < N; i + +)
for (j = 0; j < N; j + +)
for (k = 0; k < N; k + +)

C[i, j]+ = A[i, k] ∗B[k, j];

2. tiled code

for (jj = 0; jj < N; jj+ = step)
for (kk = 0; kk < N; kk+ = step)
for (i = 0; i < N; i + +)
for (j = jj; (j < N && j < jj + step); j + +)
for (k = kk; (k < N && k < kk + step); k + +)

C[i, j]+ = A[i, k] ∗B[k, j];

3. loop and data transformation

for (kk=0; kk < N; kk+ = step)
for (jj = 0; jj < N; jj+ = step)
for (i = 0; i < N; i + +)
for (k = kk; (k < N && k < kk + step); k + +)
for (j = jj; (j < N && j < jj + step); j + +)

Cr[i, j]+ = Ar[i, k] ∗Br[k, j];

4. blocked array layouts

for (ii = 0; ii < N; ii+ = step)
for (kk = 0; kk < N; kk+ = step)
for (jj = 0; jj < N; jj+ = step)
for (i = ii; (i < N && i < ii + step); i + +)
for (k = kk; (k < N && k < kk + step); k + +)
for (j = jj; (j < N && j < jj + step); j + +)

Czz[i + j]+ = Azz[i + k] ∗Bzz[k + j];

Loop Transformations: Code #1 presented above, shows the typical, unoptimized version
of the matrix multiplication code. Tiling (code #2) restructures the execution order, such that
the number of intermediate iterations and, thus, data fetched between reuses, are reduced. So,
useful data are not evicted from the register �le or the cache, before being reused. The tile
size (step) should be selected accordingly to allow reuse for a speci�c level of memory hierarchy
[LRW91].

Loop and Data Transformations: Since, loop transformation alone can not result in the
best possible data locality, a uni�ed approach that utilizes both control and data transformations
becomes necessary. In code #2, loop k scans di�erent rows of B. Given a row-order array layout,

3.2 Morton Order matrices 33

spatial reuse can not be exploited for B along the innermost loop k. Focusing on self-spatial reuse
[KRC99] (since self-temporal reuse can be considered as a subcase of self-spatial, while group
spatial are rare), the transformed code takes the form of code #3. Firstly we �xed the layout
of the LHS (Left Hand Side) array, namely array C, because in every iteration the elements
of this array are both read and written, while the elements of arrays A and B are only read.
Choosing j to be the innermost loop, the fastest changing dimension of array C[i, j] should be
controlled by this index, namely C should be stored by rows (Cr). Similarly, array B[k, j] should
also be stored by rows (Br). Finally, placing loops in ikj order is preferable, because we exploit
self-temporal reuse in the second innermost loop for array C. Thus, A[i, k] should also be stored
by rows (Ar).

Loop and non-linear Data Transformations: Selecting the best loop order within a
nested loop, when optimizing code, is a very intriguing task. In order to evaluate the merit of
non-linear data transformations, let us consider the code shown in code #4. We assume that
the elements of all three arrays are stored exactly as swept by the program (we call this layout
ZZ-order, as extensively presented in section 3.3). The loop ordering remains the same as in
code #3, except that, tiling is also applied in loop i, so as to have homomorphic shaped tiles in
all three arrays and simplify the computations needed to �nd the array element location.

3.2 Morton Order matrices

In order to capture the notion of Morton order [Wis01], a recursive storage order of arrays, the
basic elements of the dilated integer algebra are presented. Morton de�ned the indexing of a
two-dimensional array and pointed out the conversion to and from cartesian indexing available
through bit interleaving (�gure 3.1). The following de�nitions are only for two-dimensional
arrays (A d-dimensional array is represented as a 2d-ary tree).

i

4i+0 4i+1 4i+2 4i+3
0

15

47

32

63

48
95

80

79

64

31

16

96

111

112

175

207
160

159

144

143

128
127

176

191

192 208

223
240

255

224

239

0
2
8
10

4
6
12
14

1
3
9
11

5
7
13
15 0

0 1 2 3

4 5 6 70 1 2 3 8 9 10 11 12 13 14 15

j = 0 0 1 1 0 0 1 1 2 2 3 3 2 2 3 3
i = 0 1 0 1 2 3 2 3 0 1 0 1 2 3 2 3

Figure 3.1: Row-major indexing of a 4×4 matrix, analogous Morton indexing and Morton
indexing of the order-4 quadtree

34 Fast Indexing for Blocked Array Layouts

De�nition 3.1 The integer
−→
b =

∑w−1
k=0 4k is the constant 0x55555555 and is called evenBits.

Similarly,
←−
b = 2~b is the constant 0xaaaaaaaa and is called oddBits.

De�nition 3.2 The even-dilated representation of j =
∑w−1

k=0 jk 2k is
∑w−1

k=0 jk4k, denoted
−→
j .

The odd-dilated representation of i =
∑w−1

k=0 ik 2k is 2
−→
i and is denoted

←−
i .

Theorem 3.1 The Morton index for the < i, j >th element of a matrix is
←−
i ∨ −→j , or

←−
i +

−→
j .

Thus, let us consider a cartesian row index i with its signi�cant bits \dilated" so that they
occupy the digits set in oddBits and a cartesian index j been dilated so its signi�cant bits occupy
those set in evenBits. If array A is stored in Morton order, then element [i, j] can be accessed
as A[i + j] regardless of the size of array.

The implementation of the loop
for (i=0; i < N; i++) ...

will be modi�ed to
for(im=0; im < Nm; im=(im − evenBits)&evenBits) ...

where im =
−→
i and Nm =

−→
N

Using a dilated integer representation for the indexing of an array referenced by a loop
expression, if an index is only used as a column index, then its dilation is odd. Otherwise it is
even-dilated. If used in both roles, then doubling gives the odd-dilation as needed.

So, the code of matrix multiplication will be as follows:

#define evenIncrement(i)(i = ((i− evenBits)&evenBits))
#define oddIncrement(i)(i = ((i− oddBits)&oddBits))

for (i=0; i < colsOdd; oddIncrement(i))
for (j=0; j < rowsEven; evenIncrement(j))
for (k=0; k < rowsAEven; evenIncrement(k))

C[i + j]+ = A[i + k] ∗B[2 ∗ k + j];

where rowsEven, colsOdd and rowsAEven are the bounds of arrays when trans-
formed in dilated integers. Notice that k is used both as column and as row index.
Therefore, it is translated to

−→
k and for the column indexing of array B, 2∗k is used,

3.2 Morton Order matrices 35

which represents
←−
k .

Example 3.1:

Let's assume that we are looking for the array element:

C[i, j] = C[3, 4]

In order to �nd the storage location of this element in linear memory, in the
Morton layout, the following procedure should be kept.

Row index j should be dilated by evenBits = 1010101<2> constant. The linear
value of j is:

j = 4<10> = 100<2>

Even dilation of this value means that among the binary digits of j, zero digits
should be inserted. That is, where an 1 is found in the evenBits constant, the binary
digits of j should be placed:

−→
j = x30x20x10x0

where xn, the value of the n-th binary digit of j.
−→
j = 0010000<2> = 8<10>

Similarly, column index i should be dilated by oddBits = 0101010<2> constant.
The linear value of i is:

i = 3<10> = 011<2>.
←−
i = 0x20x10x00

where xn, the value of the n-th binary digit of i.
←−
i = 0001010<2> = 10<10>

As a result, C[i, j] is stored in:
←−
i +

−→
j = 0001010 + 0010000 = 0011010<2>←−

i +
−→
j = 10<10> + 8<10> = 18<10>.

This is element C[18]. 3

36 Fast Indexing for Blocked Array Layouts

3.3 Blocked array layouts

In this section we present the non-linear data layout transformation. Since the performance of
so far presented methods [CL95], [KRC99], [WL91] is better when tiling is applied, we would
achieve even better locality, if array data are stored neither column-wise nor row-wise, but in
a blocked layout. Such layouts were used by Chatterjee et al in [CJL+99], [CLPT99], in order
to obtain better interaction with cache memories. According to [CJL+99], a 2-dimensional
m × n array can be viewed as a dm

tR
e × d n

tC
e array of tR × tC tiles. Equivalently, the original

2-dimensional array space (i, j) is mapped into a 4-dimensional space (ti, tj , fi, fj), as seen in
�gures 3.2 and 3.4. The proposed layout for the space (fi, fj) of the tile o�sets is a canonical
one, namely column-major or row-major, according to the access order of array elements by the
program code. The transformation function for the space (ti, tj) of the tile co-ordinates can be
either canonical or follow the Morton ordering.

3.3.1 The 4D layout

In L4D, both LT and LF are canonical layouts. In our example, both of them should be row-
major, in order to follow the access order in matrix multiplication algorithm. In the following,
consider an array of 27× 27 elements, divided to 4× 4 tiles.

The �nal 4-dimensional array is drawn in �gure 3.2. The 4-dimensional space is presented
as an 2-dimensional space of tile co-ordinates which contain pointers on 2-dimensional arrays of
tile o�sets.

 0 1 2 3 4 5 6 0 1 2 3 4 5 6

tj fj

fi

ti

 0 1 2 3 0 1 2 3 (3,0)

 tile co-ordinates

tile
offsets

reference to element : (2,6,3,0)

0

161514

13121110987

654321

262524232221

191817

373635

34333231302928

27

48474645444342

41403938

(2,6)

Figure 3.2: The 4-dimensional array in 4D layout

The value of each dimension is calculated as follows:

3.3 Blocked array layouts 37

tile co-ordinates : ti = i div step

tj = j div step

tile o�sets : fi = i mod step

fj = j mod step

If the original code of matrix multiplication is tiled in all three dimensions the
derived code is a 6-depth loop:

for (ii = 0; ii < N; ii + step)
for (kk = 0; kk < N; kk + step)
for (jj = 0; jj < N; jj + step)
for (i = 0; (i < ii + step && i < N); i + +)
for (k = 0; (k < kk + step && k < N); k + +)
for (j = 0; (j < jj + step && j < N); j + +)

C[i][j]+ = A[i][k] ∗B[k][j];

Using the 4D layout, the implementation of the matrix multiplication code should
be:

for (ii = 0; ii < NN; ii + +) {
stepi = (N > step ∗ (ii + 1)?step : (N − ii ∗ step));
for (kk = 0; kk < NN; kk + +) {

stepk = (N > step ∗ (kk + 1)?step : (N − kk ∗ step));
for (jj = 0; jj < NN; jj + +) {

stepj = (N > step ∗ (jj + 1)?step : (N − jj ∗ step));
for (i=0; i < stepi; i + +)
for (k=0; k < stepk; k + +)
for (j=0; j < stepj; j + +)

C[ii][jj][i][j]+ = A[ii][kk][i][k] ∗B[kk][jj][k][j]; }
}

}

where N , step are the array and tile bound respectively, and NN = d N
stepe.

Example 3.2:
Let's assume that we are looking for the array element:

C[i, j] = C[11, 24]

To calculate the storage position of this element, the procedure that is described
below and illustrated in �gure ?? should be followed. We assume that array C is of
size 27× 27, follows the L4D layout, and is split to tiles of size 4× 4.

38 Fast Indexing for Blocked Array Layouts

Tile coordinates:

ti = i div step = 11 div 4 = 2<10>

tj = j div step = 24 div 4 = 6<10>

The requested element is stored in the tile, with coordinates [2, 6].

Tile o�sets:

fi = i mod step = 11 mod 4 = 3<10>

fj = j mod step = 24 mod 4 = 0<10>

The requested element is stored inside a tile, in a position with coordinates [3, 0]

In L4D, element C[11, 24] of the original array, is stored in a 4-dimensional array
in position [2][6][3][0]. 3

3.3.2 The Morton layout

In LMO, LT follows Morton ordering, while LF has a canonical layout (in our example row-major
layout in order to keep step with access order). The original array is the same as the previous
case (array of 27×27 elements, divided to 4×4 tiles), apart from the number of padding-elements
which is greater than in the previous case, so that the array dimension becomes a power of two.

i

j
0

1298

2219187632

201716541

272615141110

28252413

383534

52494837363332

30

60575645444140

54515039

0 .. 3 4 .. 7 8 ..11 12..15 16..19 20..23 24..27

0
..
3

4
..
7

8
..1
1
12
..1
5
16
..1
9
20
..2
3
24
..2
7 i = 11

j = 24
i div 4 = 2 i mod 4 = 3
j div 4 = 6 j mod 4 = 0

tile co-ordinates

tile
offsets

21

23

29

31

53

55

61

6362595847464342

 24 25 26 27

 8

9

10

11

2 = 010<2> 001000
6 = 110<2> 010100odd-dilated

even-dilated

011100<2> = 28

28 div 8 = 3
28 mod 8 = 4

Figure 3.3: The tiled array and indexing according to Morton layout

3.3 Blocked array layouts 39

54
60

46

625958

4342

53
61 63

55

31

2321

 0 1 2 3 4 5 6 0 1 2 3 4 5 6

tj

fj

fi

ti

 0 1 2 3 0 1 2 3

(3,4)

(3,0)

 tile co-ordinates

tile
offsets

reference to element : (3,4,3,0)

0

181716

141312111098

654321

29

22

27262524

2019

4140

38373635343332

30

5251504948

4544

15

7

39

47

5756

Figure 3.4: The 4-dimensional array in Morton layout in their actual storage order:
padding elements are not canonically placed on the borders of the array, but mixed with
useful elements

The �nal 4-dimensional array is drawn in �gure 3.4. Notice that the padded elements are
not in the border of the array but they are mixed with the original elements.

The value of each dimension is calculated as follows:

tile co-ordinates : tilenum =
←−−−−−−−
(i div step)|−−−−−−−→(j div step)

ti = tilenum div nt

tj = tilenum mod nt

tile o�sets : fi = i mod step

fj = j mod step

where ←−x and −→x is the odd and even dilated representation of x, respectively, and nt

the number of tiles that �t in each row or column of the padded array (we consider
square padded arrays, as this is a demand of the Morton layout).

When applying the Morton layout, the resulting code for matrix multiplication
is :

40 Fast Indexing for Blocked Array Layouts

for (ii = 0; ii < NNodd; ii = (ii− oddBits)&oddBits) {
if (((ii− oddBits)&oddBits) == NNodd)

stepi = (step b == 0?step : step b);
else stepi = step;
for (kk = 0; kk < NNeven; kk = (kk − evenBits)&evenBits) {
if (((kk − evenBits)&evenBits) == NNeven)

stepk = (step b == 0?step : step b);
else stepk = step;
x = ii|kk;
tiA = x/NN;
tkA = x%NN;
for (jj = 0; jj < NN; jj + +) {
if (((jj − evenBits)&evenBits) == NNeven)

stepj = (step b == 0?step : step b);
else stepj = step;
y = ii|jj;
tiC = y/NN;
tjC = y%NN;
z = (kk << 1)|kk;
tkB = z/NN;
tjB = z%NN;
for (i=0; i < stepi; i + +)
for (k=0; k < stepk; k + +)
for (j=0; j < stepj; j + +)

C[tiC][tjC][i][j]+ = A[tiA][tkA][i][k] ∗B[tkB][tjB][k][j];
}

}
}

where step b = N%step

NNodd =
←−−
NN

NNeven =
−−→
NN

The above code does not contain any time-consuming calculations to locate the right
array elements. Even for the LMO layout, boolean operations are considered, which
add the minimum possible overhead. However, referring to 4-dimensional arrays
produces long assembly codes, thus, repetitive load and add instructions, which, as
seen in experimental results, are too time consuming and, thus, degrade the total
performance.

3.3 Blocked array layouts 41

Example 3.3:
that we are looking for the array element:

C[i, j] = C[11, 24]
To calculate the storage position of this element, the procedure that is described

below and illustrated in �gure ?? should be followed. We assume that array C is of
size 27× 27, follows the L4D layout, and is split to tiles of size 4× 4.

Tile coordinates:

tilenum =
←−−−−−−−
(i div step)|−−−−−−−→(j div step) =

←−−−−−
(11div4)|−−−−−→(24div4) = ←−

2 |−→6

The above indices should be dilated:
even− dilation: ←−−−2<10> = ←−−−−

010<2> = 001000<2> = 8<10>

odd− dilation: −−−→6<10> = −−−−→
110<2> = 010100<2> = 20<10>

tilenum =
←−
2 |−→6 = 8 + 20 = 28

ti = tilenum div nt = 28 div 8 = 3<10>

tj = tilenum mod nt = 28 mod 8 = 4<10>

The requested element in found in tile #28 [3, 4] coordinates.

Tile o�sets:

fi = i mod step = 11 mod 4 = 3<10>

fj = j mod step = 24 mod 4 = 0<10>

As a result, inside the tile, the requested element is found in position of [3, 0]
coordinates.

In LMO, element C[11, 24] of the original array, is stored in a 4-dimensional array
in position [3][4][3][0] (�gure ??). 3

3.3.3 Our approach

Tiled codes do not access array elements according to their storage order, when a linear layout
has been applied. L4D stores array elements e�ciently, as far as data locality is concerned. The
storage order follows the access order by the tiled code. However, 4-dimensional arrays, that
are included in the L4D implementation, insert large delays, because they involve four di�erent
indices and four memory references in each array reference. On the other hand, Morton order
proposes a fast indexing scheme, based on dilated integer algebra. However, Morton order calls
for fully recursive arrays, which �ts with fully recursive applications. What's more, non-recursive
codes are di�cult or/and ine�cient to transformed to recursive ones.

42 Fast Indexing for Blocked Array Layouts

We adopt non-linear layouts and expand indexing scheme, using the dilated integer algebra,
to be applied to non-recursive codes. Thus we combine data storage in the same order as they
are accessed when operations are executed and a fast indexing scheme. This storage layout is
presented in �gure 3.5 for an 8 × 8 array which is split into tiles of size 4 × 4. The grey line
shows the order by which the program sweeps the array data, while numbering illustrates the
order, data are stored. We split arrays in tiles of the same size as those used by the program
that scans the elements of the array. We denote the transformation of this example as \ZZ",
because the inner of the tiles is scanned row-wise (in a Z-like order) and the shift from tile to
tile is Z-like as well. The �rst letter (Z) of transformation denotes the shift from tile to tile,
while the second indicates the sweeping within a tile. Sweeping data of an array A in ZZ-order
can be done using the code shown below:

10 11

+

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

N
step

ste
p

N

j

i

00

11

01

10

0000

0100

1000

1100

0000

0100

1000

1100
10

00 111001

<2>= 43
which tile

imasked jmasked

Figure 3.5: ZZ-transformation

\ZZ" for (ii=0; ii < N; ii+=step)
for (jj=0; jj < N; jj+=step)
for (i=ii; (i < ii + step && i < N); i++)
for (j = jj; (j < jj+step && j < N); j++)

A[i, j]=...;

In an analogous way, the other three types of transformation are shown in �gures 3.6, 3.7

3.3 Blocked array layouts 43

and 3.8. For example, according to the \NN" transformation, both the sweeping of the array data
within a tile and the shift from tile to tile are done columnwise (N-like order). The respective
codes are found below.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

N
step

ste
p

N

00

1101

10

j

i

Figure 3.6: NZ-transformation

\NZ" for (jj=0; jj < N; jj+=step)
for (ii=0; ii < N; ii+=step)
for (i = ii; (i < ii + step && i < N); i++)
for (j = jj; (j < jj + step && j < N); j++)

A[i, j]=...;

\NN" for (ii=0; ii < N; ii+=step)
for (jj=0; jj < N; jj+=step)
for (i = ii; (i < ii + step && i < N); i++)
for (j = jj; (j < jj + step && j < N); j++)

A[i, j]=...;

\ZN" for (jj=0; jj < N; jj+=step)
for (ii=0; ii < N; ii+=step)
for (i = ii; (i < ii + step && i < N); i++)
for (j = jj; (j < jj+step && j < N); j++)

A[i, j]=...;

Since compilers support only linear layouts (column-order or row-order) and not blocked
array layouts, sweeping the array data when stored in one of the four aforementioned ways,

44 Fast Indexing for Blocked Array Layouts

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

32 36 40 44

33 37 41 45

34 38 42 46

35 39 43 47

16 20 24 28

17 21 25 29

18 22 26 30

19 23 27 31

48 52 56 60

49 53 57 61

50 53 58 62

51 55 59 63

N
step

ste
p

N

00

1101

10

i

j

Figure 3.7: NN-transformation

can be done using one-dimensional arrays and indexing them through dilated integers. Morton
indexing [WF99] cannot be applied, since it implies a recursive tiling scheme, whereas, in our
case, tiling is applied only once (1-level tiling). Thus, instead of oddBits and evenBits, binary
masks are used.

3.3.4 Mask Theory

Instead of bit interleaving of Morton indexing in recursive layouts, we use binary masks to
convert to and from cartesian indexing in our Blocked Array Layouts. The form of the masks,
for an array A[i, j] of size Ni ×Nj and tile size stepi × stepj , is illustrated below.

The number of subsequent 0 and 1 that consist every part of the masks is de�ned by the
functions mx = log(stepx) and tx = log

(
Nx

stepx

)
, where step is a power of 2. If N is not a

power of 2, we round up by allocating the just larger array with N = 2n and padding the empty
elements with arbitrary values, while the padding does not aggravate the execution time, since
padded elements are not scanned.

Likewise in Morton indexing, every array element A[i, j] can be found in the 1-dimensional
array in position [im + jm] = [im|jm], where im, jm are generated by i, j when appropriately
masked.

3.3 Blocked array layouts 45

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

32 36 40 44

33 37 41 45

34 38 42 46

35 39 43 47

16 20 24 28

17 21 25 29

18 22 26 30

19 23 27 31

48 52 56 60

49 53 57 61

50 53 58 62

51 55 59 63

N
step

ste
p

N

i

j

00 01

10 11

Figure 3.8: ZN-transformation

ZZ transformation

row index 00..0 11..1 00..0 11..1

column index 11..1 00..0 11..1 00..0

← ti → ← tj → ← mi → ← mj →

NZ transformation

11..1 00..0 00..0 11..1

00..0 11..1 11..1 00..0

← tj → ← ti → ← mi → ← mj →

NN transformation

row index 11..1 00..0 11..1 00..0

column index 00..0 11..1 00..0 11..1

← tj → ← ti → ← mj → ← mi →

depends on ←↩ ↪→ depends on the

tile to tile shift inner of tiles

ZN transformation

00..0 11..1 11..1 00..0

11..1 00..0 00..0 11..1

← ti → ← tj → ← mj → ← mi →

depends on ←↩ ↪→ depends on the

tile to tile shift inner of tiles

3.3.5 Implementation

Let us store elements in the same order, as they are swept by the instruction stream, for an
array A[i, j] using a code similar to ZZ-transformation of section 3.3.3. Figure 3.9 illustrates
such storage order. To implement blocked layouts, indices that control the location of elements
in the two-dimensional array should take non-successive values. In our example, the right values
for indices i and j that control columns and rows respectively (array size = 8× 8, step = 4), are
shown in the following table.

46 Fast Indexing for Blocked Array Layouts

linear enumeration of

columns /rows :
0 1 2 3 4 5 6 7

masked values of column i : 0 4 8 12 32 36 40 44

array/loop indices row j : 0 1 2 3 16 17 18 19

Example 3.4:

Let's assume that we are looking for the array element:

A[i, j] = A[2, 3]

To calculate the storage position of this element, the procedure that is described
below and illustrated in �gures ?? and ?? should be followed. We assume that array
C is of size Ni × Nj = 8 × 8, follows the ZZ layout, and is split to tiles of size
stepi × stepj = 4× 4.

The appropriate binary masks (section ??) for the two-dimensional array A of
our example is:

for the row index j, mj = 010011

for the column index i, mi = 101100

If values 0-7 of linear indices (which are the values given to indices i and j ac-
cording to the way compilers handle arrays so far), are �ltered, using these masks
(as analytically described in �gure 3.10), the desired values will arise.

jm = masked010011(3<10> = masked010011(011<2> = 000011<2> =
3<10>

im = masked101100(2<10> = masked101100(010<2> = 001000<2> =
8<10>

Finally, the desired element is accessed by adding these values of the two
indices:

A[im + jm] = A[8 + 3] = A[11]

Where im and jm are the masked values of i and j indices, respectively. 3

Practically, the masked values are the values of the �rst column and the �rst row elements
(�gure 3.5). So, requesting the element of the 2nd row and 3rd column, namely A[2, 3], the
index values in the one-dimensional array would be i=8, j=3.

3.3 Blocked array layouts 47

2-dimensional
array

ste
p

N

N
step

j

i

j++ i++

distance : 1

...

...
1-dimensional

array
step = 100<2>

 row mask : 010011
column mask : 101100

j+1 jmasked+000001<2>=jmasked+1

i+1 imasked+000100<2>=imasked+step

010011

101100

Figure 3.9: A 2-dimensional array converted to 1-dimensional array in ZZ-transformation

101100
0 = 000<2>

4 = 100<2>

3 = 011<2>

1 = 001<2>

2 = 010<2>

5 = 101<2>

7 = 111<2>

6 = 110<2>

x 0 xx 00
0 0 00 00 <2>= 0
0 0 01 00 <2>= 4
0 0 10 00 <2>= 8

1 0 10 00 <2>= 40
1 0 01 00 <2>= 36

0 0 11 00 <2>= 12
1 0 00 00 <2>= 32

1 0 11 00 <2>= 44

0 = 000<2>

4 = 100<2>

3 = 011<2>

1 = 001<2>

2 = 010<2>

5 = 101<2>

7 = 111<2>

6 = 110<2>

0 0 00 00 <2>= 0
0 0 00 01 <2>= 1
0 0 00 10 <2>= 2

0 1 00 10 <2>= 18
0 1 00 01 <2>= 17

0 0 00 11 <2>= 3
0 1 00 00 <2>= 16

0 1 00 11 <2>= 19

010011 0 x 00 xx
j : row index i : column index

which tile inner of tile which tile inner of tile

Figure 3.10: Conversion of the linear values of row and column indices to dilated ones
through the use of masks. This is an 8× 8 array with 4× 4 element tiles

3.3.6 Example : Matrix Multiplication

According to Kandemir et al in [KRC99], the best data locality for the Matrix
Multiplication code (C[i, j]+=A[i, k]*B[k, j]) is achieved when loops are ordered
from outermost to innermost in (i, k, j) order and tiling is being applied to both
loops k and j. This nested loop order exploits, in the innermost loop, spatial reuse
in arrays C and A, and temporal reuse in array A. The column index i of two of the
arrays, is also kept in the outermost position.

We use a modi�ed version of [KRC99] (as explained in section 3.1, to preserve
homomorphy of tile shapes), with a nested loop of depth 6, instead of depth 5, since

48 Fast Indexing for Blocked Array Layouts

+= x

k

i A

j

k B

shift in the inner of tile

0 x 00xx x 0 xx00 1 0 1100
(kB|kkB) mask0 1 0011

(kA|kkA) mask

0 0 0100
j

i C

0 1 0000

1 0 0000

switch from tile to tile
0 0 0000 0 0 0000

0 0 0001

Figure 3.11: Matrix multiplication: C[i, j]+ = A[i, k] ∗ B[k, j]: Oval boxes show the
form of row and column binary masks. Shifting from element to element inside a tile takes
place by changing the four least signi�cant digits of the binary representation of the element
position. Switching from tile to tile takes place by changing the 2 most signi�cant digits of
the binary representation of the element position.

the implementation of the mask theory is simpler in this case.

for (ii=0; ii < 8; ii+=4)
for (kk=0; kk < 8; kk+=4)
for (jj=0; jj < 8; jj+=4)
for (i = ii; (i < ii+4 && i < 8); i++)
for (k = kk; (k < kk+4 && k < 8); k++)
for (j = jj; (j < jj+4 && j < 8); j++)

C[i, j]+=A[i, k]*B[k, j];

All three arrays A,B, C are scanned according to ZZ-storage order, which matches
with ZZ-transformation. Figure 3.11 depicts the access order of array elements
(which is identical with their storage order), as well as indexing heuristics.

In the nested code of our example, the three inner loops (i, j, k) control the sweep-
ing within the tiles. The 4 least signi�cant digits of the proposed binary masks are
adequate to sweep all iterations within these loops, as shown in �gure 3.10 and 3.11.
The three outer loops (ii, kk, jj) control the shifting from tile to tile, and the 2 most
signi�cant digits of the masks can de�ne the moving from a tile to its neighboring
one.

Thus, i takes values in the range of xx00 where x = (0 or 1) and ii takes values
in the range of xx00000, so i|ii = x00xx00 gives the desired values for the columns

3.3 Blocked array layouts 49

indices : control of array(s) appropriate mask

i, ii : columns A & C column mask (101100)

j, jj : rows B & C row mask (010011)

k, kk : columns B column mask (for kB, kkB)

k, kk : rows A row mask (for kA, kkjA)

Table 3.1: Indexing of array dimensions, in the matrix multiplication code, when loops
are nested in (ii, jj, kk, i, j, k) order : C[i, j]+ = A[i, k] ∗B[k, j]

of matrix A and C. Similarly, j takes values in the range of 00xx and jj in the range
of 0x0000, so (j|jj) is the desired value for rows of B and C. Index k, does not
control the same kind of dimension in the arrays in which it is involved, as shown
in table 3.1. So, for array A, the proper mask is a row one, namely kA ∈ 00xx and
kkA ∈ 0x0000. On the other hand, for array B the mask is a column one. Thus,
kB ∈ xx00 and kkB ∈ x00000. A useful notice is that kB = kA << logstep and
kkB = kkA << log

(
N

step

)
, which results to the fast and easy calculation of these

masks, since the second value comes out through a binary shift of the value of the
�rst one.

for (ii=0; ii < ibound; ii+=iiincrement){
itilebound=(ii|imask)+1;
ireturn=(ibound < itilebound?ibound : itilebound);
for (kk=0; kk < kjbound; kk+=kkjjincrement){

ktilebound=(kk|kjmask)+1;
kreturn=(kjbound < ktilebound?kjbound : ktilebound);
kkB=kk << logNxy;
for (jj=0; jj < kjbound; jj+=kkjjincrement) {

jtilebound=(jj|kjmask)+1;
jreturn=(kjbound < jtilebound?kjbound : jtilebound);
for (i=ii; i < ireturn; i+=iincrement)
for (k=kk; k < kreturn; k+ = kjincrement) {

kB=(k & (step 1))<< logstep;
ktB=kkB|kB;
xA=i|k;
for (j=jj; j < jreturn; j+=kjincrement)

C[i|j]+=A[xA] ∗B[ktB|j];
}

}
}

}

50 Fast Indexing for Blocked Array Layouts

Where for our example,
ibound=column mask=101100<2> = 44,
iiincrement = 100000<2> = 32 = 4× 4 << N

step ,
iincrement = 100<2> = 4 = step

and ireturn = min{column mask, ii|1100<2>}.

3.3.7 The Algorithm to select the Optimal Layout per Array

In order to succeed in �nding the best possible transformation which maximizes performance, we
present a strategy, based on the algorithm presented in [KRC99], adjusted to allow for blocked
array layouts. Notice that our algorithm �nds the best data layout of each array, taking into
account all its instances in the whole program (instances of the same array in di�erent loop
nests are also included). This way, no replicates of an array are needed.

Figure 3.12 gives a graphic representation of the following algorithm. As easily derived from
the three loops of the
ow chart, the worst case complexity is O(A ·r ·D), where A is the number
of di�erent array references, r is the number of dimensions each array reference contains and D

is the loop depth (before tiling is being applied).

• Create a matrix R of size r × l, where r = number of different array references and
l = nested loop depth (before tiling is applied). If there are two identical references to
an array, there is no need for an extra line. We can just add an indication to the row
representing this array, putting double priority to its optimization. For the example of
matrix multiplication R is:

i k j

R =




1 0 1

1 1 0

0 1 1




C**
A
B

Notice that the Left Hand Side (LHS) array of an expression (for our example this is array
C) is more important, because in every iteration the referred element is both read and
written.

Each column of R represents one of the loop indices. So, elements of R are set when the
corresponding index controls one of the array's dimensions. Otherwise array elements are
reset.

3.3 Blocked array layouts 51

Choose the most weighty unoptimized reference to an array

Pick an index of this array reference

Can you put this index in the m-th depth loop nest
position without changing any predefined ordering or

data dependencies?

Store the array so that the chosen dimension is the fastest changing

m=n

Have you
checked all
indices?

m:=m-1

m==0?

Make an arbitrary placement

yes

no

no

yes

yes
no

Start

Are all array references
optimized?

End

yes

no

Figure 3.12: Flow Chart of the proposed optimization algorithm: it guides optimal nested
loop ordering, which is being matched with respective storage transformation

• Optimize �rst the layout of the array with the greatest number of references in the loop
body. (In our example this is array C). The applied loop transformations should be such
that one of the indices that control an array dimension of it, is brought in the innermost
position of the nested loop. Thus, the C row of R should come to the form (x, . . . , x, 1),
where x = 0 or 1. To achieve this, swapping of columns can be involved. The chosen index
is preferable be the only element of the stated dimension and should not appear in any
other dimension of C.

After that, in order to exploit spatial locality for this reference, array C should be stored in
memory such that the chosen dimension (let's say x-th) is the fastest changing dimension.
Notice that all possible values for x should be checked.

• Then, �x the remaining references to arrays by priority order. The target is to bring as
many of the R-rows in the form (x, . . . , x, 1). So, if an array index, lets consider this is
the one that controls the y-th dimension of array A, is identical to the x-th of C then
store A such that its fastest changing dimension is y-th. If there is no such dimension

52 Fast Indexing for Blocked Array Layouts

for A, then we should try to transform the reference so that it is brought to the form
A[∗, . . . , ∗, f(iin−1), ∗, . . . , ∗], where f(iin−1) is a function of the second innermost loop
iin−1 and other indices except the innermost iin, and ∗ indicates a term independent of
both iin−1 and iin. Thus, the R-row for A would be (x, . . . , x, 1, 0) and the spatial locality
along iin−1 is exploited. If no such transformation is possible, the transformed loop index
iin−2 is tried and so on. If all loop indices are tried unsuccessfully, then the order of loop
indices is set arbitrarily, taking into account the data dependencies.

• After a complete loop transformation and a respective memory layout are found, they are
stored, and the next alternative solution is tried. Among all feasible solutions, the one
which exploits spatial locality in the innermost loop for the maximum number of array
references, is selected.

• When the nested loop has been completely reordered, we apply tiling. In this stage, the
complete layout type is de�ned. For each one of the array references, the dimension which
was de�ned to be the fastest changing should remain the same for the tiled version of the
program code as far as the storage of the elements within each tile is concerned. This
means, that for two-dimensional arrays, if the form of the reference is C[∗, iin], so the
storing order inside the tile should be row-major, for the blocked array layout we should
use the xZ-order (namely ZZ- or NZ-order). If the form of the reference is C[iin, ∗], so
the storing order inside the tile should be column major, for the blocked array layout we
should use the xN-order (namely ZN- or NN-order). The shifting from tile to tile, and
therefore the �rst letter of the applied transformation, is de�ned by the kind of tiling we
will choose. For the two dimensional example, if no tiling is applied to the dimension
marked as * then we will have NZ or ZN, respectively, transformation. Otherwise, if for
a nested loop of depth n: (i1, i2, . . . , in) the tiled form is: (ii1, ii2, . . . , iin, i1, i2, . . . , in)

(where iix is the index that controls the shifting from one tile to the other of dimension
ix), then the layout should be ZZ or NN respectively. In most cases, applying tiling in
all dimensions brings uniformity in the tile shapes and sizes that arrays are split and as
a result, fewer computations for �nding the position of desired elements are needed. The
size of tiles depends on the capacity of the cache level we want to exploit.

• Alternatively to the above procedure of selecting the best loop ordering, there is another
approach proposed by McKinley et al in [MCT96]. They quantify the loop order cost by
the formula:

iterations

cline/stride

where iterations = total number of loop iterations

3.4 Summary 53

cline = cache line size in data elements (number of array
elements that �t in one cache line)

stride = loop step multiplied by the coe�cient of
the loop index in the array reference

If the loop index is not present in an array reference, the loop cost for this reference
is 1. If non-consecutive array elements are being accessed by an array reference, and
stride > cline, then the loop cost for this reference is equal to iterations. Each loop can
be considered as candidate in the innermost position. The above function calculates the
cost of each loop, when it is placed in the innermost position, while the remaining loops of
the nest are ordered arbitrarily. The total nested loop cost comes up by multiplying the
innermost loop cost with the total number of iterations of the remaining loops.

In the following example, we apply the above formula in the matrix multiplication bench-
mark.

for (i=0; i < N; i++)
for (k=0; k < N; k++)
for (j=0; j < N; j++)

C[i, j]+=A[i, k]*B[k, j];

References i j k

A[i, k] : N3 N2 N
8 N2

B[k, j] : N2 N
8 N2 N3

C[i, j] : N3 N
8 N2 N2

total : 2N3 + N2 1
4N3 + N2 9

8N3 + N2

According to the calculated loop costs, the loop order should be chosen to be (from inner-
most to outermost): j, k , i. This is the same result, as the initial method.

3.4 Summary

Low locality of references, thus poor performance in algorithms which contain multidimensional
arrays, is due to incompatibility of canonical array layouts with the pattern of memory accesses
from tiled codes. In this chapter, we described the e�ectiveness of blocked array layouts and
provided with an addressing scheme that uses simple binary masks, which are based on the

54 Fast Indexing for Blocked Array Layouts

algebra of dilated integers, accomplished at low cost. Both experimental and simulation results
of chapter 6 illustrate the e�ciency of the proposed address computation methods.

CHAPTER 4
A Tile Size Selection Analysis

This chapter provides a theoretical analysis for the cache and TLB performance of blocked data
layouts. According to this analysis, the optimal tile size that maximizes L1 cache utilization,
should completely �t in the L1 cache, to avoid any interference misses. We prove that when
applying optimization techniques, such as register assignment, array alignment, prefetching and
loop unrolling, tile sizes equal to L1 capacity, o�er better cache utilization, even for loop bo-
dies that access more than just one array. Increased self- or/and cross-interference misses are
now tolerated through prefetching. Such larger tiles also reduce lost CPU cycles due to less
mispredicted branches.

So far, signi�cant work has been done to predict cache behavior when blocked benchmarks
are executed and, hence, select the optimal tile size that compromizes the minimization of
capacity and interference misses. All related work selects tiles smaller than half of the cache
capacity (they usually refer to L1 cache) or cache and TLB concurrently. However, blocked
array layouts almost eliminate self-interference misses, while cross-interference can be easily
obviated. Therefore, other factors, before negligible, now dominate cache and TLB behavior,
that is, code complexity, number of mispredicted branches and cache utilization. We have
managed to reduce code complexity of accesses on data stored in a blocked-wise manner by
the use of e�cient indexing, described in detail in chapter 3. Experimentation has proved that
maximum performance is achieved when L1 cache is fully utilized. At this point, tile sizes �ll
the whole L1 cache. Proper array alignment obviates cross-con
ict misses, while the whole
cache is exploited, as all cache lines contain useful data. Such large tiles reduce the number of
mispredicted branches, as well.

It is proven that blocked array layouts have really easily predictable cache behavior, which
gives straightforward heuristics for choosing the best tile size. Example codes are considered to
be optimized using well-known transformation techniques proposed in the literature. Apart from
tiling, the most critical transformations are loop permutation, reversal and skewing, loop fusion
and loop distribution, loop unrolling [Jim99], and software controlled prefetching [BAYT01],

56 A Tile Size Selection Analysis

[MG91]. Note that there is no need to apply either copying or padding in blocked array layouts.
The remainder of the chapter is organized as follows: Section 4.1 demonstrates the need

of optimizing L1 cache behavior, as it is the dominant factor on performance, presenting a
theoretical analysis of cache performance. A tight lower bound for cache and TLB misses
is calculated, which meets the access pattern of the Matrix Multiplication kernel. Finally,
concluding remarks are presented in Section 4.2.

4.1 Theoretical analysis

In this section we study the cache and TLB behavior, while executing the widely used benchmark
of matrix multiplication. The greatest part of the analysis is devoted to the Sun UltraSPARC
II architecture. This machine bears direct mapped caches, which brings a large number of
con
ict misses and complicates cache miss equations. Arrays are considered to be stored in
memory according to the proposed blocked layouts, that is, elements accessed in consecutive
iterations are found in nearby memory locations. Blocked layouts eliminate all self-con
ict
misses. We examine only square tiles. Such tile shapes are required for symmetry reasons,
to enable the simpli�cation of the benchmark code. As a result, while optimizing nested loop
codes and selecting tile sizes, we should focus on diminishing the remaining factors that a�ect
performance. The following analysis is an e�ort to identify such factors.

4.1.1 Machine and benchmark speci�cations

In this chapter we will continue to use the example matrix multiplication code,
optimized as proposed by [KRC99], [RT98b], [AK04a]: C+ = A ∗B

for (ii=0; ii < N; ii+=T)
for (kk=0; kk < N; kk+=T)
for (jj=0; jj < N; jj+=T)
for (i = ii; (i < ii+T && i < N); i++)
for (k = kk; (k < kk+T && k < N); k++)
for (j = jj; (j < jj+T && j < N); j++)

C[i, j]+=A[i, k]*B[k, j];

Figure 4.1 illustrates groups of data elements reused in the three arrays. In-tile reuse is the
amount of data reused along the execution of (i, k, j) loops. For example, reference C[i, j] reuses
data along loop k, which contains a whole tile line of C. Maximum distance reuse is the amount
of data reused along the three outer loops (ii, kk, jj). For example, reference A[i, k] reuses data
along loop jj, which contains a whole tile of A.

4.1 Theoretical analysis 57

N

N+= *

T

N

T

T

in-tile reuse maximum distance reuse

C += A B*

Figure 4.1: Reuse of array elements in the matrix multiplication code

We examine a Sun Enterprise UltraSPARC II machine with CPUs at 400MHz, each with
a 16 KB direct-mapped on-chip instruction L1 cache, a 16 KB direct-mapped on-chip data L1
cache with 8 clock cycles miss penalty, a direct-mapped L2 external cache of 4 MB with 84
clock cycles miss penalty, and a 64-entry data TLB with 8 KB page size and 51 clock cycles
miss penalty. Appendix A contains the symbols used in this section to represent the machine
characteristics.

In the following, we o�er a detailed analysis only of the most interesting area of array and
tile sizes, as far as peak performance is concerned.

4.1.2 Data L1 misses

We study the case of a direct-mapped L1 cache. This is the most complicated case, because
multiple con
ict misses can easily arise and they are di�cult to be counted. Array alignment
should be carefully chosen, so that no more than two arrays are mapped in the same cache
location, concurrently. In case of a naive data placement, there can be an extremely large
number of con
ict misses. Choosing the best alignment for L1 cache should not a�ect the
number of con
ict misses in L2 cache. L2 cache is larger enough than L1 and usually of higher
associativity, so that by adding some multiples of CL1 in the relevant position of arrays (that
was chosen to comply with L1 cache capacity), we can �nd a quite good array alignment for L2
cache, without worsening mapping alignment in L1 cache. Anyway, L2 caches are usually set
associative, so that they can be easily handled.

The following analysis keeps cache capacity unchanged, so that we can study the L1 cache
behavior, for various array and tile sizes.

Direct mapped L1 caches

a. More than just one array �t in the cache: N2 < CL1

In this case, array sizes are small enough, so that all reused data of arrays A, B, C �t in the
cache, that is, all three arrays can exploit reuse, both in-tile and intra-tile. As a result, misses are

58 A Tile Size Selection Analysis

minimized, apart from compulsory misses (cold start misses). When 3N2 ≤ CL1, choosing the
relevant storage placement of array element in main memory, which gives a speci�c mapping in
the cache, is quite easy. However, when 2N2 = CL1 the relevant positioning of �st data element
of each array, should be really carefully chosen. As far as arrays A and C are considered, the
minimum mapping distance of elements A[0] and C[0], which ensures zero con
ict misses in L1
cache, is NT − (

T 2 − T
)

elements (< CL1). This distance secures that during the reuse of NT

elements (one row of tiles) of array C, along kk loop , there will not be any con
ict with the
NT elements of array A. There are no con
ict misses even during the last reuse of NT elements
of C, when A reuses along loop jj the T 2 elements of the last tile in the tile row (the one that
is mapped almost completely inside the A

⋂
C area). The T elements distance in this case is

enough to deter con
ict misses. Figure 4.2 presents an example, where T = N
2 .

For arrays C and B , this minimum mapping distance has to be N2 − (
NT − T 2

)
elements,

as shown in �gure 4.2. In order to avoid con
ict misses between A and B arrays, the overlapping
mapping area of these two arrays in L1 cache has to be: A

⋂
B ≤ NT − T 2 + T − L1. In the

proposed �gure, this constraint is valid, since A
⋂

B = T elements (this is the dark colored area
of array B that seems to over
ow from the cache. This area is mapped to the top of the cache,
where array's A elements are stored - white area).

N2

N2

C

A

B

C[0]

A[0]

B[0]

NT-T2+TT2

N2-(NT-T2)

B[N2-1]

C[N2-1]

Figure 4.2: Alignment of arrays A, B, C, when N2 ≤ CL1

In all cases, the total number of L1 misses are equal to the compulsory misses:

MA = MB = MC = N2

L1

b. Just one array �ts in L1 cache: CL1 = N2

In this case, L1 cache has enough capacity just for one array (N2 = CL1). As a result, we need
to choose relative mapping distances of the three arrays in the cache carefully, in order to avoid
a large number of con
ict misses. As far as arrays A, C are regarded, the minimum mapping
distance of A[0] and C[0] has to comply with restrictions of section 4.1.2.a. The mapping distance

4.1 Theoretical analysis 59

of arrays C and B (that is the mapping distance between �rst array elements C[0] and B[0]) is
chosen to be T 2 − L1 elements. This mapping distance can deter references B[k, j] and C[i, j]

from accessing the same cache line in the same loop iteration. According to this array alignment,
the number of cache misses for each one of the three arrays is:

N2 B[0]

C

A

B

C[0]

A[0]

NT-T2+T

T2-L1

L1

Figure 4.3: Alignment of arrays A, B, C, when CL1 = N2

MA = N2

L1
+ con
ict misses with array B

MB = N2

L1
+ con
ict misses with arrays A, C

MC = N2

L1
+ con
ict misses with array B

During the sequential iterations of loop kk, array references A and C access one row of tiles
(x tiles = NT elements). On the contrary, array reference B accesses a total of N2 elements,
that is the whole L1 cache. As a result, there is con
ict between references to B elements and
references to A and C elements. Every con
ict between B and A elements, removes T 2 elements
of A, which are being reused along loop jj. Con
icts between B and C elements remove T ·N
elements of C, which are being reused along loop kk. The next reference to these removed
elements will bring a cache miss. As a result, the missing elements will be brought again in L1
cache, to be restored. This restoring will take place place x − 1 times for array A (for all x

iterations of loop ii, except for 1: when the con
ict takes place during the last reuse of the T 2

elements of A. This means that there is no need for restoring these elements, since there will
be no further reference to them - in the proposed alignment this is the �rst iteration of loop ii).
Similarly, restoring of removed elements of C will take place x − 1 times (the �rst iteration of
loop ii is being excluded, like array A).

Furthermore, whenever two tiles of A and B arrays are mapped in the same cache area
(once every ii loop iteration), the same cache line is being accessed at the same time for L1

sequential iterations (out of T 2 in loops k, j). This con
ict brings L1 misses for both A and B

arrays. During each i iteration a whole tile line (T elements) of array B is being removed due to
references to elements of array A and vice versa. This tile line should be reloaded in the cache,
which brings T

L1
misses to both A and B arrays. The described con
ict sequence ((L1 + T

L1
)

60 A Tile Size Selection Analysis

misses) is being repeated T times during execution of loop i, once in loops jj and kk, and x

times in loop ii.

On the other hand, two tiles of arrays C and B are never mapped in the same L1 cache area.
However, during execution of kk loop iterations, while references to array C access one tile row
elements (this is NT elements), they remove array B elements. As a result, 2NT

L1
misses take

place (NT elements are being removed from the cache due to the previous iteration of loop ii

and NT elements due to the current iteration). This iterative reloading takes place x− 1 times
(during all x iterations of loop ii except for the �rst one).

MA = N2

L1
+ T 2

L1
· (x− 1) +

(
L1 + T

L1

)
· T · x = N2

L1
+ N ·

(
L1 + T

L1

)
− T 2

L1

MB = N2

L1
+

(
L1 + T

L1

)
· T · x + 2NT

L1
· (x− 1) = N2

L1
+ N ·

(
L1 + T

L1

)
+ 2N2

L1
− 2NT

L1

MC = N2

L1
+ NT

L1
· (x− 1) = N2

L1
+ NT

L1
· (N

T − 1
)

If T = N , the mapping distance of C[0] and A[0] elements, is chosen to be T = N elements,
to be equal to the number of reused elements during the execution of loop k. Moreover, the
mapping distance between B[0] and C[0] is chosen to be T − L1 elements.

N2

C
A

C[0]

T

1

L1 B[0]

A[0]

Figure 4.4: Alignment of arrays A, B, C, when CL1 = N2, with T = N

Similarly:

MA = N2

L1
+ L1 · (N − 1)

MB = N2

L1
+ L1 · (N − 1) + N

L1
· (N − 1) + 2N

L1
· (N − 1) = N2

L1
+ L1 · (N − 1) + 3N

L1
· (N − 1)

MC = N2

L1
+ N

L1
· (N − 1)

c. One row of tiles �ts in the cache: N2 > CL1, T ·N < CL1

In this case, at least two rows of tiles �t in L1 cache.

Data reuse can be exploited in arrays A and C, both inner-tile reuse and whole-tile reuse,
because L1 cache can accommodate T 2 and T ·N elements respectively. On the other hand, for
array B, only inner-tile reuse can be exploited. To exploit whole-tile reuse, N2 (≥ CL1) elements

4.1 Theoretical analysis 61

TxN

TxN

C

A

B

A[0]

C[TN-1]

C[0]

B[0]
B[N2-1]

1

1

NT-T2+T

T2-L1

Figure 4.5: Alignment of arrays A, B, C, when N2 > CL1 and T ·N < CL1

should be accommodated in L1 cache. The mapping distances of elements A[0], C[0] and B[0]

should be chosen as in section 4.1.2.b, when T 6= N . Figure 4.5 illustrates the chosen mapping.

The total number of misses is:

MA = N2

L1
+ con
ict misses with array B

MB = N3

T ·L1
+ con
ict misses with array A

MC = N2

L1
+ con
ict misses with array B

Along loop kk, references to arrays A and C access elements of a whole tile row, each (x
tiles = NT elements, by each array reference). At the same time, reference to array B accesses
all L1 cache lines N2

CL1
times (N2 elements of array B are being accessed). As a result, there is

con
ict between arrays B and A or C in the cache. Every con
ict removes T 2 elements from
the cache for both arrays A and C, which will have to be reloaded in the cache N2

CL1
· x times.

The exact number is N2

CL1
·
(
x− N2

CL1

)
+

(
N2

CL1
− 1

)
· N2

CL1
= N2

CL1
· (x− 1): in N2

CL1
iterations (out

of x iterations of loop kk) one of the con
icts between A and C takes place during the very �rst
use of one of the tiles of A. As a result, this number of misses have already been included in the
number of compulsory misses This means that reloading need to be done only

(
N2

CL1
− 1

)
times

in these cases.

Additionally, whenever two tiles of arrays A and B are being mapped in the same cache
lines (N2

CL1
times along loop kk),

(
L1 + T

L

)
misses arise to both arrays A and B, as described in

section 4.1.2.b. The above sequence of misses iterates T times along loop i, once along loop jj,
N2

CL1
times along loop kk, and x times along loop ii. There is no similar phenomenon in con
icts

between arrays A and C, due to the chosen mapping distance of arrays:

MA = N2

L1
+ T 2

L1
· N2

CL1
· (x− 1) +

(
L1 + T

L

) · T · N2

CL1
x = N2

L1
+ N3

CL1
·
(
L1 + 2T

L1

)
− N2T 2

L1CL1

MB = N3

TL1
+

(
L1 + T

L

) · T · N2

CL1
x = N3

TL1
+ N3

CL1
·
(
L1 + T

L1

)

MC = N2

L1
+ T 2

L1
· N2

CL1
· (x− 1) = N2

L1
+ N2T 2

L1CL1
· (N

T − 1
)

62 A Tile Size Selection Analysis

d. Just one tile from each one of the three arrays can �t in the cache:

3T 2 < CL1 ≤ T ·N (N2 > CL1)

In this case, three whole tiles can be accommodated in the cache, one from each one of the three
arrays. The mapping distance between A[0] and C[0] is chosen to be T 2 − T elements, so that
inner-tile reuse of array C will not result in any con
ict with elements of array A (�gure 4.6).
The mapping distance between elements C[0], B[0] has to be at least T 2−L1 elements, similarly
to in section 4.1.2.b.

A[0]

T

C

A

B
B[0]

1

L1

C[0]

Figure 4.6: Alignment of arrays A, B, C, when 3T 2 < CL1 ≤ T ·N

Data reuse in arrays B and C along ii and kk loops respectively, can not be exploited, since
there is not enough L1 cache capacity to accommodate N2 or T ·N elements respectively. Even
if CL1 = T · N , when reused elements of array C along kk could �t in L1 cache, references to
array B elements remove elements of array C and avert exploitation of data reuse. Con
icts
between elements of arrays B and C, do not bring any further misses apart from averting data
reuse in the cache. The total number of misses is:

MB = N3

TL1
+ con
ict misses with array A

MC = N3

TL1
+ con
ict misses with array A

On the other hand, data reuse of array A can be exploited along jj loop (this reuse includes
just T 2 elements):

MA = N2

L1
+ con
ict misses with array B, C

Along jj, while references to array A access array elements which belong to the same tile,
references to arrays B and C access all L1 cache lines (x tiles are being accessed for each
array B,C = NT elements). As a result, both arrays B, C con
ict with array A elements
NT
CL1

times. Every con
ict removes T 2 elements of array A from the cache, which should be
reloaded 2 · NT

CL1
· x2 times (NT

CL1
times due to con
icts with array B elements and NT

CL1
times

due to con
icts with array C elements, multiplied with x2, the number of iterations along
ii and kk loops). The precise number of iterative data reloading of array A in the cache is

4.1 Theoretical analysis 63

2 NT
CL1

·
(
x− NT

CL1

)
· x +

(
2 NT

CL1
− 1

)
· NT

CL1
· x = NT

CL1
· (2x− 1) · x: in NT

CL1
iterations (out of x

iterations) of loop kk one of the con
icts between arrays A and C takes place along the last
reuse of an A tile, which means that there is no need of reloading it in the cache.

Additionally, whenever two tiles of arrays A, B are mapped in the same cache area (NT
CL1

times along loop jj),
(
L1 + T

L

)
misses take place on both arrays A and B, as described in

section 4.1.2.b. These extra misses take place T times along loop i, NT
CL1

times along loop jj and
x2 times along loops kk and ii. We do not have similar phenomenon when con
icts between
arrays A and C take place. This is due to chosen alignment, which is more than T elements
between any two concurrently accessed cache lines by references to these two arrays. Finally:

MA = N2

L1
+ T 2

L1

NT
CL1

· (2x− 1) · x +
(
L1 + T

L

) · T · NT
CL1

· x2 = N2

L1
·
(
1− T 2

CL1

)
+ N3

CL1
·
(
L1 + 3T

L1

)

MB = N3

TL1
+

(
L1 + T

L

) · T · NT
CL1

· x2 = N3

TL1
+ N3

CL1

(
L1 + T

L1

)

MC = N3

TL1

e. Less than three whole tiles �t in the cache: N2 > CL1, T 2 ≤ CL1 < 3T 2

We chose the mapping distance of A[0] and C[0] to be T elements, that is, a whole tile row. In
order to have the minimum number of con
ict misses in arrays B and C, the mapping distance
of B[0] and C[0] should be at least T 2 − L1 elements (�gure 4.7).

T

T2

L1

C
A

B

C[0]

B[0]

A[0]

Figure 4.7: Alignment of arrays A, B, C, when N2 > CL1, T 2 ≤ CL1 < 3T 2

Only inner-tile reuse can be exploited in three arrays along the three inner tiles. As a result:

MA = N3

TL1
+ con
ict misses with array B

MB = N3

TL1
+ con
ict misses with arrays A, C

MC = N3

TL1
+ con
ict misses with array B

Con
icts between references to arrays A and B take place similarly to the previous case.
The di�erence is in the frequency of con
icts: tiles of arrays A and B are mapped in the same
area in the cache T 2

CL1
· x times along loop jj (T 2

CL1
≤ 1).

64 A Tile Size Selection Analysis

Regarding con
icts between arrays B and C, along loop i, a whole tile row (T elements)
of array B are being removed from the cache due to overwriting of array C elements, and vice
versa. This tile row should be reloaded in the cache, which means T

L1
additional misses for both

arrays B and C. The above sequence of con
icts reiterates T times along loop i, T 2

CL1
· x times

along loop jj and x2 times along loops kk and ii.

MA = N3

TL1
+ L1 · T · T 2x

CL1
· x2 = N3

TL1
+ N3L1

CL1

MB = N3

TL1
+

(
L1 + T

L1

)
· T · T 2x

CL1
· x2 + T

L1
· T ·

(
T 2

CL1
x
)
· x2 = N3

TL1
+ N3

CL1

(
L1 + 2T

L1

)

MC = N3

TL1
+ T

L1
· T · T 2x

CL1
· x2 = N3

TL1
+ N3T

CL1L1

f. A whole tile �ts in the cache: N2 > CL1, T 2 > CL1 > T

In order to minimize the number of con
icts between elements of di�erent arrays, we chose
the mapping distances to be C[0] − A[0] = T elements and B[0] − C[0] = CL1

4 − L1 elements
(�gure 4.8).

T

CL1/4

L1

C
A

B

C[0]

B[0]

A[0]

Figure 4.8: Alignment of arrays A, B, C, when N2 > CL1, T 2 > CL1 > T

Similarly to the case of section 4.1.2.e, whole-tile reuse can not be exploited. Additionally,
inner tile reuse can not be exploited in array B (along loop i), either. As as result, the total
number of misses for each array is:

MA = N3

TL1
+ con
ict misses with array B

MB = N3

L1
+ con
ict misses with array A

MC = N3

TL1
+ con
ict misses with array B

As a result, during con
icts between arrays B and A or C, we should not calculate the
number of removed from cache elements of B, due to such con
ict. However, a whole tile row
(T elements) of arrays A or C are being also removed, and have to be reloaded in the cache.

MA = N3

TL1
+ L1 · T · T 2x

CL1
· x2 = N3

TL1
+ N3L1

CL1

MB = N3

L1
+ L1 · T · T 2x

CL1
· x2 = N3

L1
+ N3L1

CL1

MC = N3

TL1
+ T

L1
· T · T 2x

CL1
· x2 = N3

TL1
+ N3T

CL1L1

4.1 Theoretical analysis 65

g. A tile row exceeds the capacity of the cache: N2 > CL1, T ≥ CL1

Additionally to the calculated misses of section 4.1.2.f, in array C inner-tile reuse (along loop
k) can not be exploited, As a result, the total number of misses for each array is:

MA = N3

TL1
+ con
ict misses with arrays B, C

MB = N3

L1
+ con
ict misses with array A

MC = N3

L1
+ con
ict misses with array A

Choosing the mapping distance of arrays B and C to be B[0] − C[0] ≥ L1 elements, there
is no con
ict miss between these two arrays. While reference A[i, k] accesses iteratively the
same element along loop j, references to arrays B and C traverse the whole cache, accessing T

sequential elements. Each of them con
icts with an array A element T
CL1

times, and L1 misses
arise. This process goes over T 2 ·x3 times along loops k, i, jj, kk and ii. As a result, the number
of con
ict misses (for each one of the involved arrays) is T

CL1
· L1 · T 2x3:

MA = N3

TL1
+ 2 T

CL1
· L1 · T 2x3 = N3

TL1
+ 2N3L1

CL1

MB = N3

L1
+ T

CL1
· L1 · T 2x3 = N3

L1
+ N3L1

CL1

MC = N3

L1
+ T

CL1
· L1 · T 2x3 = N3

L1
+ N3L1

CL1

Summary of L1 cache misses in direct mapped caches

Table 4.1 summarizes the total number of cache misses M1 (= MA + MB + MC) in a L1 direct
mapped cache, for all possible array and tile sizes.

requirements M1

N2 < CL1
3N2

L1

N2 = CL1, T 6= N 6N2

L1
+ 2NL1 − T 2+NT

L1

N2 = CL1, T = N 7N2

L1
+ 2NL1 −

(
2L1 + 4N

L1

)

N2 > CL1, T ·N < CL1
2N2

L1

(
1− T 2

CL1

)
+ N3

TL1
+

+ N3

CL1

(
2L1 + 4T

L1

)

3T 2 < CL1 ≤ T ·N N2

L1

(
1− T 2

CL1

)
+ 2N3

TL1
+

+ N3

CL1

(
2L1 + 4T

L1

)

T 2 ≤ CL1 < 3T 2 3N3

TL1
+ N3

CL1

(
2L1 + 3T

L1

)

T 2 > CL1 > T N3

L1
+ N3

TL1

(
2 + T 2

CL1

)
+ 2N3L1

CL1

T ≥ CL1
N3

TL1
+ 2N3

L1
+ 4N3L1

CL1

Table 4.1: Calculation formulas for direct-mapped L1 cache misses

66 A Tile Size Selection Analysis

The above formulas are being graphically depicted in �gure 4.9, for di�erent problem sizes
and for the cache characteristics of the UltraSPARC II machine.

L1 misses (16KB D-cache, direct mapped)

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+10

1,E+11

10 100 1000 10000
T : tile dimension size (elements)

n
u

m
b

er
 o

f
m

is
se

s

N=4096
N=2048
N=1024
N=512
N=256
N=128
N=64
N=32

Figure 4.9: Number of L1 cache misses for various array and tile sizes in direct mapped
caches, when the described in section 4.1.2 alignment has been applied (UltraSPARC II
architecture)

The number of L1 cache misses drop to a minimum, for all array sizes, when T = 32, where
three whole tile �t in the cache (one for each of the three arrays). When T = 64 (T =

√
CL1),

just one tile �t in the cache, however the whole cache capacity is being exploited, At this point,
the number of cache misses slightly increases, but it is still quite close to its minimum value.

Set Associative L1 caches

In case of set associative caches, apart from capacity misses, neither self- nor cross-interference
misses arise. Even 2-way set associativity is enough for kernel codes such as matrix multipli-
cation, where data elements from three di�erent arrays are retrieved. Array alignment should
be carefully chosen, so that no more than two arrays are mapped in the same cache location,
concurrently. For this purpose, the starting mapping distances of arrays (that is, elements A[0],
B[0], C[0]), should be chosen to be from L1 to T 2 elements.

a. More than just one array �t in the cache: N2 < CL1:

In this case, all three arrays can exploit reuse, both in-tile and intra-tile. For example, array C

reuses one tile row along loop j (in-tile reuse) and a whole row of tile along loop jj (intra-tile
reuse). In both cases, the working set �t in L1 cache. As a relult, for array C:

MC = x2 · T 2

L1
=

(
N
T

)2 T 2

L1
= N2

L1

Similarly, MA = MB = N2

L1

4.1 Theoretical analysis 67

b. More than just one row of tiles �t in the cache: N2 ≥ CL1, T ·N < CL1

For arrays A, C reuse along loops kk and jj respectively can be exploited, as there is enough
L1 cache capacity to hold T 2 and T ·N elements respectively. As in section 4.1.2:

MA = MC = N2

L1

On the other hand, for array B only in-tile reuse can be exploited, as loop ii reuses N2

elements, and the cache capacity is not adequate to hold them. As a result, each ii iteration
will have to reload the whole array in the cache:

MB = x3 · T 2

L1
=

(
N
T

)3 T 2

L1
= N3

TL1

In case that N2 = CL1, T = N , there is in fact no tiling, so reuse takes place in loops k and
j for arrays A and C, containing just 1 element, one row of the array (N elements) respectively.
As a result, reuse is exploited as above. However, the reference to array B reuses N2 elements
(the whole array) along loop i. In each iteration of i, two rows of B elements (2N elements)
have been discarded from the cache, due to references to arrays A and C. That is:

MB = N2

L1
+ (N − 1) · 2N

L1

c. Just one tile from each one of the three arrays can �t in the cache: N2 > CL1,

3T 2 < CL1 ≤ T ·N :

Three whole tiles �t in the cache, one for each of the three arrays. For arrays B, C reuse along
loops ii and jj respectively can not be exploited, as there is not enough L1 cache capacity to
hold N2 and T ·N elements respectively. The number of misses are:

MB = MC = N3

TL1

On the other hand, reuse along loop kk for array A can be exploited (only T 2 elements are
included):

MA = N2

L1

d. Less than three whole tiles �t in the cache: N2 > CL1, T 2 ≤ CL1 < 3T 2:

There is enough space for at most two whole tiles. Only in-tile reuse can be exploited in the
arrays along the three inner loops. Thus:

MA = MB = MC = N3

TL1

e. A whole tile �ts in the cache: N2 > CL1, T 2 > CL1 > T :

As in the previous case, no whole-tile reuse can be exploited. Additionally, in array B, in-tile
reuse (along loop i) can not be exploited, either. Therefore, the total number of misses for each
array is:

MA = MC = N3

TL1

MB = N3

L1

68 A Tile Size Selection Analysis

Summary of the Data L1 misses in set associative caches:

Table 4.2 summarizes the total number of Data L1 cache misses M1 for a set associative cache and
di�erent problem sizes, and �gure 4.10 illustrates the graphic representation of these formulas,
for the cache characteristics of the Xeon DP architecture (appendix B).

requirements M1

N2 < CL1 3N2

L1

N2 ≥ CL1, T ·N < CL1 2N2

L1
+ N3

TL1

N2 = CL1, T = N 5N2

L1
− N)

L1

N2 > CL1, 3T 2 < CL1 < T ·N N2

L1
+ 2 N3

TL1

T 2 ≤ CL1 < 3T 2 3 N3

TL1

T 2 > CL1 > T 2 N3

TL1
+ N3

L1

T ≥ CL1
N3

TL1
+ 2N3

L1

Table 4.2: Formulas for set associative Data L1 misses

L1 misses (16KB D-cache, associativity > 1)

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+10

10 100 1000 10000
T : tile dimension size (elements)

n
u

m
b

er
 o

f
m

is
se

s 4096
2048
1024
512
256
128
64

Figure 4.10: Number of L1 cache misses for various array and tile sizes in set associative
caches (Xeon DP architecture)

Figure 4.10 illustrates the graphic representation of the set-associative case formulas. In
direct mapped caches, many more con
ict misses arose, and they were highly depended on array
alignment. In both cases (set associative and direct mapped caches), the �nal conclusion is the
same: L1 cache misses increase sharply when the working set, reused along the three innermost
loops, overwhelms the L1 cache. That is, the tile size overexceeds the L1 cache capacity (CL1),
and no reuse can be exploited for at least one array. For direct mapped caches, when the tile size
is equal to the L1 cache capacity (T 2 = CL1), the number of cache misses increases compared to

4.1 Theoretical analysis 69

the just smaller tile size, however this increase is not signi�cant and, as proved in the following
sections, it is counterbalanced by the decrease of misses in other levels of memory hierarchy.

4.1.3 L2 misses

This cache level has similar behaviour as the L1 cache. As a result, we skip the detailed
analysis and provide only with the corresponding graphs. Figure 4.11(a) presents the number
of L2 cache misses in case of a direct mapped cache, with size equal the L2 cache of the Sun
UltraSPARC platform. Figure 4.11(b) presents the number of L2 cache misses in case of a
set associative cache, with size equal the L2 cache of the Intel Xeon platform (table 5.1). In
the direct mapped case, array alignment chosen for the respective L1 direct mapped cache can
easily meet the requirements of L2 cache, too, by interjecting some multiples of CL1 among the
mapping positions of di�erent arrays (chosen in section 4.1.2).

L2 misses (4MB U-cache, direct mapped)

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+10

10 100 1000 10000
T : tile dimension size (elements)

n
u

m
b

er
 o

f
m

is
se

s

N=4096
N=2048
N=1024
N=512
N=256
N=128
N=64
N=32

(a) direct mapped caches

L2 misses (1MB U-cache, associativity > 1)

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+10

10 100 1000 10000
T : tile dimension size (elements)

n
u

m
b

er
 o

f
m

is
se

s 4096
2048
1024
512
256
128

(b) set associative caches

Figure 4.11: Number of L2 direct mapped cache misses for various array and tile sizes

70 A Tile Size Selection Analysis

We note that L2 cache is uni�ed (for data and instructions). However, the number of misses
hardly increases (less than 1%) compared to an equal-sized data cache, when caches are large,
like the one of the Xeon or the UltraSPARC platforms.

The number of L2 misses, for all array sizes, are minimized for T 2 = CL2, when the whole
cache is been used and a whole tile �ts in the cache so that tile-level reuse can be exploited.
However, L1 misses are 1 order of magnitude more than L2 misses. As a result, the L1 misses
dominate in the total memory behaviour, as illustrated in �gure 4.13(a).

4.1.4 Data TLB misses

This cache level is usually fully associative. So, there is no need to take care of array alignment.

a. The addresses of three whole tile rows �t in the TLB: N2 ≥ E · P , 3T ·N < E · P

When N2 ≥ E · P but 3T ·N < E · P , the addresses of three rows of tiles (one of each array)
�t in the TLB. For arrays A and C, reuse along loops kk and jj, respectively, can be exploited,
as there is enough space in the TLB to hold T 2

P and T ·N
P addresses respectively. So, the total

number of TLB misses is equal to the compulsory (cold start) misses, that is N2

P for each one of
the two arrays.

On the other hand, reuse for array B can not be fully exploited, because there is not adequate
cache space for all N2

P addresses. Along loop ii, the reused addresses are not stored in the TLB
any more and they should be reloaded. However, there is no con
ict with arrays A, C, because
the LRU (least recently used) pages are those of B.

MA = N2

P , MB = x× N2

P = N3

T ·P , MC = N2

P

b. The addresses of more than just one row of tiles �t in the TLB: N2 > E · P ,

T ·N < E · P < 3T ·N

In this case, reuse along loop jj can not be exploited for array C, as there is not enough space
for T ·N

P addresses.

MA = N2

P , MB = N3

T ·P , MC = x× N2

P = N3

T ·P

c. The addresses of more than just one tile �t in the TLB: N2 > E ·P , T 2 < E ·P < 3T 2

In this case, although there is enough space for the T 2

P addresses of array A to be hold in the
TLB in order to be reused along kk, when the cache is full, the critical addresses of A are not
the most frequently used, so they are erased from the cache.

MA = N3

T ·P , MB = N3

T ·P , MC = N3

T ·P

4.1 Theoretical analysis 71

d. The addresses of less than a whole tile �t in the TLB: N2 > E · P , T 2 > E · P > T

In this case we lose reuse of array B along loop i, because the cache capacity is not adequate to
store all T 2

P addresses:
MA = N3

T ·P , MB = N3

P , MC = N3

T ·P

e. The addresses of less than a whole tile row �t in the TLB: N2 > E · P , T ≥ E · P

In this case reuse of array C along loop j can not be exploited, because the cache capacity is
not adequate to store T

P addresses:
MA = N3

T ·P , MB = N3

P , MC = N3

P

Summary of the TLB misses

Table 4.3 summarizes the total number of Data TLB misses MTLB for all problem sizes.

requirements MTLB

N2 < E · P 3N2

P

3T ·N ≤ E · P 2N2

P + N3

T ·P

T ·N < E · P < 3T ·N N2

P + 2 N3

T ·P

T 2 < E · P < 3T 2 3 N3

T ·P

T 2 > E · P > T 2 N3

T ·P + N3

P

T > E · P N3

T ·P + 2N3

P

Table 4.3: Formulas for Data TLB misses

According to the above analysis, the number of Data TLB misses has the form of �gure 4.12.
The number of TLB misses for all array sizes, for an example of 64 entries (as the size of

both Xeon and UltraSPARC's TLB is), are minimized when T = 256, as the addresses of pages
for a whole tile �t in the TLB entries, so that tile-level reuse can be exploited.

4.1.5 Mispredicted branches

The extra loop levels bring an increased number of mispredicted branches. In order to avoid a
large performance degradation due to branch prediction faults, we incorporate the number of
possible miss-predicted branches into our model.

We use a modi�ed version of Vera's function [Ver03]. We consider n nested loops, with
executed iterations I =

{
I1, . . . , In

}
respectively. Since current branch predictors may miss-

speculate when loops �nish their execution, the number of expected mispredicted branches is:

72 A Tile Size Selection Analysis

TLB misses (64 entries, 8KB pages)

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

10 100 1000 10000

T : tile dimension size (elements)

n
u

m
b

er
 o

f
m

is
se

s

N=4096

N=2048

N=1024

N=512

N=256

N=128

N=64

N=32

Figure 4.12: Number of TLB misses for various array and tile sizes

Mbr =
∑j≤n

j=1

∏i<j
i=1 Ii

In the examined matrix multiplication example (using the proposed e�cient indexing), we
have a 6-nested loop with I =

{
N
T , N

T , N
T , T, T, T

}
. As a result the expected number of mispre-

dicted branches is:

Mbr6 = 1 + N
T +

(
N
T

)2 +
(

N
T

)3 +
(

N
T

)3 × T +
(

N
T

)3 × T 2

Notice that in comparison with a 5-nested loop, where tiling is not applied in loop i, there is
not much di�erence in the number of mispredicted branches. Therefore, the increased depth of
the nested loop, as enforced by the e�cient indexing, does not bring any worthwhile performance
degradation:

∆M = Mbr6 −Mbr5 =
(

N
T

)3

For N = 1024 and T = 32, the increase percentage
(

∆M
Mbr5

)
is less than 0.01%.

4.1.6 Total miss cost

Taking into account the miss penalty of each memory level, as well as the penalty of mispredicted
branches, we derive the total miss cost of �gure 4.13(a). Notice that we count only the data L2
misses, although the L2 cache is uni�ed for both instructions and data. Increase in the number
of L2 misses due to instruction misses is really negligible.

Figure 4.13(a) makes clear that L1 misses dominate cache and, as a result, total performance
in the UltraSPARC II architecture. Maximum performance is achieved when T = 64, which is
the optimal tile size for L1 cache (the maximum tile that �ts in L1 cache). L1 cache misses
are more than one order of magnitude more than L2 misses and three orders of magnitude
more than TLB misses. Notice that the UltraSPARC II architecture bears quite a large L2
cache (4Mbytes), which reduces the number of L2 misses signi�cantly, and leaves L1 cache to
dominate total performance. Thus, even though L1 misses cost fewer clock cycles, they are still

4.1 Theoretical analysis 73

the most weighty factor.

The studied architecture has direct mapped caches, which brings a large number of con
ict
misses, as proved in section 4.1.2 and 4.1.3. When caches are multi-way set associative (even
2-way set associative is enough for our case), con
ict misses are eliminated, and reuse can be
exploited as far as cache capacity makes it permissible. Cache miss equations follow the TLB
analysis of section 4.1.4 (which is a fully associative cache, too).

Figure 4.13(b) illustrates the cache and TLB performance of a Xeon DP architecture, which
has multi-way set associative caches. More details about its architecture characteristics can be
found in appendix B.

Total cache & TLB miss cost (tile penalty included) - UltraSparc II

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+10

1,E+11

1,E+12

10 100 1000 10000

T : tile dimension size (elements)

m
is

s
co

st
 (

cy
cl

es
)

N=4096

N=2048

N=1024

N=512

N=256

N=128

N=64

N=32

(a) direct mapped caches (UltraSPARC II architecture)

Total cache & TLB miss cost (tile penalty included) - Xeon DP

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1,E+10

1,E+11

1,E+12

10 100 1000 10000
tile size

m
is

s
p

en
al

ty
 (

cl
o

ck
 c

yc
le

s)

4096
2048
1024
512
256
128
64

(b) set associative caches (Xeon DP architecture)

Figure 4.13: The total miss cost for various array and tile sizes

74 A Tile Size Selection Analysis

4.2 Summary

A large amount of related work has been devoted to the selection of optimal tile sizes and
shapes, for numerical nested loop codes where tiling has been applied. In this chapter, we have
found theoretically that, when blocked layouts are used, in direct mapped caches, L1 cache
misses dominate overall performance. Prefetching in combination with other code optimization
techniques, set optimal tiling dimension to be T =

√
CL1, where decrease of L2 and TLB misses

as well as mispredicted branches counterbalance a slight increase of L1 cache misses (compared
to their minimum value).

CHAPTER 5
Simultaneous Multithreading

Simultaneous multithreading (SMT) has been proposed to improve system throughput by over-
lapping multiple (either multi-programmed or explicitly parallel) threads on a single wide-issue
processor. Recent studies have demonstrated that heterogeneity of simultaneously executed ap-
plications can bring up signi�cant performance gains due to SMT. However, the speedup of a
single application that is parallelized into multiple threads, is often sensitive to the e�ciency of
synchronization and communication mechanisms between its separate, but possibly dependent,
threads. Moreover, as these separate threads tend to put pressure on the same architectural
resources, no signi�cant speedup can be achieved.

This chapter describes the characteristics of the SMT architecture and discusses so far pro-
posed methods to exploit idle processor cycles through multithreading features. It also presents
synchronization and implementation issues. Finally, it explores the CPI limits of the Intel Xeon
processor enabled with hyperthreading technology.

The remainder of this chapter is organized as follows: Section 5.1 describes the spacial case of
SMT platforms. Section 5.2 reviews related prior work. Section 5.3 deals with implementation
aspects of software techniques to exploit hardware multithreading. Section 5.4 explores the
performance limits and TLP-ILP tradeo�s, by considering a representative set of instruction
streams. Finally, we conclude with section 5.5.

5.1 Introduction

One approach to maintain high throughput of processors despite the large relative memory
latency has been Simultaneous Multithreading (SMT). SMT is a hardware technique that allows
a processor to issue instructions from multiple independent threads, to the functional units of
a superscalar processor, in the same cycle. This enables the processor to use all available
parallelism to fully utilize the execution resources of the machine. Through this increased
competition, SMT decreases wasted issue slots and increases
exibility [TEE+96].

76 Simultaneous Multithreading

Along with multithreading, prefetching is one of the most popular techniques for tolerating
the ever-increasing memory wall problem. In contrast to multithreading, in which instructions
from di�erent threads are executed, when the running thread encounters a cache miss, prefetch-
ing tolerates latency by anticipating what data is needed and moving it to the cache ahead of
time. As long as prefetching begins early enough and the data is not evicted prior to its use,
memory access latency can be completely hidden.

Since the concept of SMT processors was �rst introduced in research publications during the
past years, there have been proposed two main techniques to utilize the multiple hardware con-
texts of the processors for improving performance of a single program: thread-level parallelism
(TLP) and speculative precomputation (SPR). With TLP, sequential codes are parallelized so
that the total amount of work is decomposed into independent parts which are assigned to
a number of software threads for execution. In SPR, the execution of programs is facilitated
with the introduction of additional threads, which speculatively prefetch data that is going to
be used by the sibling computation threads in the near future, thus hiding memory latencies
and reducing cache misses [WWW+02], [KLW+04], [TWN04]. However, we have to be really
careful when implementing parallel threads on SMT architectures. In the multithreading mode,
processor units (reservation station, renaming registers, fetch/decode units) are either shared
or partitioned between logical processors and resource contention can increase. Even an idle
thread may lead to starvation of the dispatch unit, due to the static partitioning of the fetch
and decode units [SU96].

Most previous work demonstrated simulation results on SMT model processors. Experi-
ments on real machines equipped with HT-enabled processors [BP04], [KLW+04], [TT03], did
not report any signi�cant speedups, when parallelizing a single application. The bene�t of mul-
tithreading on SMT architectures depends on the application and its level of tuning [MCFT99].
For example, optimized blocked matrix multiply has good register and cache reuse. With a high
level of tuning to expose register and cache locality, additional threads on the same physical
processor will harm performance. A naive matrix multiply has poor locality of references and
hence bene�ts from TLP.

5.2 Related Work

Simultaneous multithreading [HKN+92], [TEE+96], [TEL95] is said to outperform previous exe-
cution models because it combines the multiple-instruction-issue features of modern superscalar
architectures with the latency-hiding ability of multithreaded ones: all hardware contexts are
simultaneously active, competing in each cycle for the available shared resources. This dynamic
sharing of the functional units allows simultaneous multithreading to substantially increase
throughput, attacking the two major impediments to processor utilization - long latencies and
limited per-thread parallelism. However, the
exibility of SMT comes at a cost. When multiple

5.2 Related Work 77

threads are active, the static partitioning of resources (instruction queue, reorder bu�er, store
queue) a�ects benchmarks with relative high instruction throughput. Static partitioning, in
the case of identical thread-level instruction streams, limits performance, but mitigates signi�-
cant slowdowns when non-similar streams of microinstructions are executed [TT03]. Moreover,
multiple-issue processors are prone to instruction cache thrashing.

Cache prefetching [LM96], [LM99], [MG91] is a technique that reduces the observed latency
of memory accesses by bringing data into the cache before it is accessed by the CPU. However, as
processor throughput improves due to memory latency tolerance, prefetching su�ers from certain
disadvantages. Firstly, use of memory bandwidth is increased since prefetching increases memory
tra�c. Memory requirements are also increased as much more cache accesses are generated and
thus, more data are being brought in the caches for future use. Finally, the number of executed
instructions is increased, �lling the pipeline cycles with time consuming operations [BAYT04].

Hardware prefetching schemes [Che95], [JG97], [Jou90] are advantageous in that they do not
require complicated compiler support, they do not require additional instructions to be added
to a program, and they are capable of exploiting information that is available only at run time.
Most forms of hardware prefetching rely on the assumption that future cache miss patterns can
be predicted from past memory access behavior.

The software approach [MG91] has limited negative impact on bus tra�c and introduces
less con
icts with the working set than the hardware approach. However, the overhead due
to the extra prefetch instructions and associated computations is substantial in the software
directed approach and can o�set the performance gain of prefetching. The relative e�ective-
ness of prefetching is slightly degraded by the increase of memory latencies, with the software
prefetching su�ering the less. The performance of hardware and software prefetching was found
roughly equivalent in [CB94], but hardware prefetching o�ers performance improvements at a
considerably higher price, both in terms of additional bandwidth requirements and total system
cost.

Numerous thread-based prefetching schemes, either static or dynamic, have recently been
proposed. Zilles and Sohi's Speculative Slices [ZS01] execute as helper threads having their
own registers (copy of main thread values), without performing any stores. In Roth and Sohi's
Data Driven Multithreading [RS01], critical instructions are predicted in order to fork a spec-
ulative data-driven thread (DDT). Speculative results integrated into the main thread when
a data-
ow comparison determines that speculatively executed instructions exactly match in-
structions renamed by the main thread. This data-
ow comparison requires one-to-one cor-
respondence in the computations, precluding optimization of slices. Luk proposed in [Luk01]
Software Controlled Pre-Execution, which can accurately generate data addresses with irregular
patterns by directly executing the code that generates them. Annavaram et al.'s Data Graph
Precomputation (DGP) [APD01] is an approach for dynamically identifying and precomputing
the instructions that determine the addresses accessed by those load/store instructions marked

78 Simultaneous Multithreading

as being responsible for most data cache misses. Moshovos et al's Slice-Processors [MPB01]
dynamically predict critical computation slices of applications and run them speculatively in
advance to prefetch delinquent loads. Collins et al. propose Dynamic Speculative Precomputa-
tion [CWT+01] (hardware-constructed thread-based prefetching), which performs all necessary
instruction analysis, extraction, and optimization through the use of back-end instruction anal-
ysis hardware, located o� the processor�s critical path. Kim et al [KLW+04] construct helper
threads automatically, using an optimization module in the Intel pre-production compiler. Sun-
daramoorthy et al's [SPR00] slipstream architecture propose the production of a reduced version
of the original program, removing ine�ectual computations, with the potential to execute in-
structions early.

The key idea is to utilize otherwise idle hardware thread contexts to execute speculative
threads on behalf of the main thread. These speculative threads attempt to trigger future
cache-miss events far enough in advance of access by the non-speculative (main) thread, so that
the memory miss latency can be masked. A common implementation pattern was used in these
studies. A compiler identi�es either statically or with the assistance of a pro�le the memory
loads that are likely to cause cache misses with long latencies. Such load instructions, known
as delinquent loads, may also be identi�ed dynamically in hardware [CTWS01], [WWW+02],
triggering speculative-helper threads. Speculative precomputation targets load instructions that
exhibit unpredictable irregular, data-dependent or pointer chasing access patterns. Traditionally,
these loads have been di�cult to handle via either hardware or software prefetchers.

Shared Execution units, Trace cache, L1 D-cache,
L2 cache, DTLB, Global history array, Al-
locator, Microcode ROM, µop retirement
logic, IA-32 instruction decode, Instruc-
tion scheduler, Instruction fetch logic

Duplicated Processor architecture state, Instruction
pointers, Rename Logic, ITLB, Stream-
ing bu�ers, Return stack bu�er, Branch
history bu�er

Partitioned µop queue, Memory instruction queue,
Reorder bu�er, General instruction queue

Table 5.1: Hardware management in Intel hyper-threaded processors

5.3 Implementation 79

ROM
Microcode

ETC

Queue
Uop

I−Fetch

(a) Trace cache hit datapath

Uops
Queue

L2 Access

ITLB

Decode

L2 access Decode TC Fill

ETC

(b) Trace cache miss datapath

Uops
Queue

Register
Rename

Allocator

ExecReg ReadRename

L1 DCache RegistersRegisters

Store Buffer

general

memory

Sched RetireReg WriteL1 Cache

(c) Out of Order datapath

Figure 5.1: Resource partitioning in Intel hyperthreading architecture

5.3 Implementation

Implementing speculative precomputation

There are two main issues that must be taken into account in order to e�ectively perform software
prefetching using the multiple execution contexts of a hyper-threaded processor. First of all,
the distance at which the precomputation thread runs ahead of the main computation thread,
has to be su�ciently regulated. This requirement can be satis�ed by imposing a speci�c upper
bound on the amount of data to be prefetched. In our codes it ranges from 1

A ([TWN04]) to 1
2 of

the L2 cache size, where A is the associativity of the cache (8 in our case). Whenever this upper
bound is reached but the computation thread has not yet started using the prefetched data, the
precomputation thread must stop its forward progress in order to prevent potential evictions of
useful data from cache. It can only continue when it is signaled that the computation thread
starts consuming the prefetched data. In our program codes, this scenario is implemented using
synchronization barriers which enclose program regions (precomputation spans) whose memory
footprint is equal to the upper bound we have imposed. In the general case, and considering
their relatively lightweight workload, precomputation threads reach always �rst the barriers.

80 Simultaneous Multithreading

For codes whose access patterns were di�cult to determine a-priori, we had to conduct
memory pro�ling using the Valgrind simulator[NS03]. From the pro�ling results we were able
to determine and isolate the instructions that caused the majority(92% to 96%) of L2 misses.
In all cases, precomputation threads were constructed manually from the original code of the
main computation threads, preserving only the memory loads that triggered the majority of L2
misses; all other instructions were eliminated.

Secondly, we must guarantee that the co-execution of the precomputation thread does not
result in excessive consumption of shared resources that could be critical for the sibling com-
putation thread. Despite the lightweight nature of the precomputation threads, as mentioned
in the following section, signi�cant processor resources can be consumed even when they are
simply spinning on synchronization barriers.

Synchronization Issues

The synchronization mechanisms have to be as lightweight as possible and for this purpose
we have implemented lightweight spin-wait loops as the core of our synchronization primitives,
with embedded the pause instruction in the spin loop, as recommended by Intel [Int]. This
instruction introduces a slight delay in the loop and de-pipelines its execution, preventing it
from aggressively consuming valuable, dynamically shared, processor resources (e.g. execution
units, branch predictors and caches).

However, some other units (such as micro-ops queues, load/store queues and re-order bu�ers),
are statically partitioned and are not released when a thread executes a pause. By using the
privileged halt instruction, a logical processor can relinquish all of its statically partitioned
resources, make them fully available to the other logical processor, and stop its execution going
into a sleeping state. The halt instruction is primarily intended for use by the operating
system scheduler. Multithreaded applications with threads intended to remain idle for a long
period, could take advantage of this instruction to boost their execution. We implemented kernel
extensions that allow from user space the execution of halt on a particular logical processor,
and the wake-up of this processor by sending IPIs to it. By integrating these extensions in the
spin-wait loops, we are able to construct long duration wait loops that do not consume signi�cant
processor resources. Excessive use of these primitives, however, in conjunction with the resultant
multiple transitions into and out of the halt state of the processor, incur extra overhead in terms
of processor cycles. This is a performance tradeo� that we took into consideration throughout
our experiments.

5.4 Quantitative analysis on the TLP and ILP limits of the processor 81

5.4 Quantitative analysis on the TLP and ILP limits of the pro-

cessor

This section explores the ability and the limits of hyper-threading technology on interleaving
and executing e�ciently instructions from two independent threads. We constructed a series of
homogeneous instruction streams, which include basic arithmetic operations (add,sub,mul,div),
as well as memory operations (load, store), on integer and
oating-point 32-bit scalars. For each
of them, we tested di�erent levels of instruction level parallelism.

In our experiments, we arti�cially increase(decrease) the ILP of the stream by keeping the
source and target registers always disjoint, and at the same time expanding(shrinking) the target
operands (T). We have considered three degrees of ILP for each instruction stream: minimum
(|T |=1), medium (|T |=3), maximum (|T |=6).

5.4.1 Co-executing streams of the same type

CPI

min ILP med ILP max ILP

instr. 1thr 2thr 1thr 2thr 1thr 2thr

fadd 6.01 6.03 2.01 3.28 1.00 2.02

fmul 8.01 8.04 2.67 4.19 2.01 3.99

faddmul 7.01 7.03 2.34 3.83 1.15 2.23

fdiv 45.06 99.90 45.09 107.05 45.10 107.43

oad 1049.05 2012.62 1049.06 2012.43 1049.05 2011.86

fstore 1050.67 1982.99 1050.68 1983.07 1050.67 1982.93

iadd 1.01 1.99 1.01 2.02 1.00 2.02

imul 11.02 11.05 11.03 11.05 11.03 11.05

idiv 76.18 78.76 76.19 78.71 76.18 78.73

iload 2.46 4.00 2.46 3.99 2.46 3.99

istore 1.93 4.07 1.93 4.08 1.93 4.07

Table 5.2: Average CPI for di�erent TLP and ILP execution modes of some common
instruction streams

As a �rst step, we execute each instruction stream alone on a single logical processor, for
all degrees of ILP (1thread columns of table 5.2). In this way, all the execution resources
of the physical package are fully available to the thread executing that stream. As a second
step, we co-execute within the same physical processor two independent instruction streams
of the same ILP, each of which gets bound to a speci�c logical processor (threads columns of

82 Simultaneous Multithreading

 0

 1

 2

 3

 4

 5

 6

 7

 8

istoreiloadiaddfadd-mulfmulfadd

A
ve

ra
ge

 C
P

I

Examined instruction stream

1thr-minILP
2thr-minILP

1thr-medILP
2thr-medILP
1thr-maxILP
2thr-maxILP

Figure 5.2: Average CPI for di�erent TLP and ILP execution modes of some common
instruction streams

table 5.2). This gives us an indication on how various kinds of simultaneously executing streams
of a speci�c ILP level, contend with each other for shared resources, and an estimation whether
the transition from single-threaded mode of a speci�c ILP level to dual-threaded mode of a lower
ILP level, can hinder or boost performance. For example, let's consider a scenario where, in
single-threaded and maximum ILP mode, instruction A gives an average CPI of C1thr−maxILP ,
while in dual-threaded and medium ILP mode the same instruction gives an average CPI of
C2thr−medILP > 2 × C1thr−maxILP . Because the second case involves half of the ILP of the
�rst case, the above scenario prompts that we must probably not anticipate any speedup by
parallelizing into multiple threads a program that uses extensively this instruction in the context
of high ILP (e.g. unrolling). Bold �gures of table 5.2 indicate best case performance. Figure 5.2
depicts the slowdown factors of table 5.2.

5.4.2 Co-executing streams of di�erent types

Table 5.3 presents the results from the co-execution of di�erent pairs of streams (for the sake of
completeness, results from the co-execution of a given stream with itself, are also presented). We
examine pairs whose streams have the same ILP level. The slowdown factor represents the ratio
of the CPI when two threads are running concurrently, to the CPI when the benchmark indicated
in the �st column is being executed in single-threaded mode. Note that the throughput of integer
streams is not a�ected by variations of ILP and for this reason we present only exact �gures
of medium ILP. All �gures that vary less than 0.05 compared to medium ILP representative
ones are also omitted. Bold �gures indicate the most signi�cant slowdown factors. Figures 5.3
and 5.4 depict the slowdown factors of table 5.3.

5.5 Summary 83

Co-executed Instruction Streams

ILP fadd fmul fdiv fload fstore

fadd
min:

med:

max:

1.004

1.635

2.016

1.004

1.787

2.801

1.010

2.023

1.398

1.474

1.409

1.462

fmul
min:

med:

max:

1.002

1.433

1.384

1.004

1.566

1.988

1.006

1.062 1.391 1.393

fdiv
min:

med: 1.017 1.027

2.217

2.374 1.413 1.422

oad
min:

med:

max:

1.144

1.286

1.684

1.169

1.255

1.358

1.153 1.919 1.907

fstore
min:

med:

max:

1.134

1.229

1.625

1.133

1.229

1.316

1.150 1.897 1.887

ILP iadd imul idiv iload istore

iadd med: 2.014 1.316 1.117 1.515 1.405

imul med: 1.116 1.002 1.008 1.003 1.004

idiv med: 1.042 1.019 1.033 1.003 1.003

iload med: 2.145 0.941 0.934 1.621 1.331

istore
min:

med:

max:

4.072

4.299

2.160

1.979

0.941

1.970

0.934

1.986

1.622

2.115

1.331

Table 5.3: Slowdown factors from the co-execution of various instruction streams

5.5 Summary

This chapter presents the architectural characteristics of a simultaneous multithreaded platform,
the hyper-threaded Intel microarchitecture. We examined homogeneous instruction streams exe-
cuted in parallel in the hyper-threaded processor, in order to �nd average CPIs for integer/
oat-
ing point calculations and memory operations.

84 Simultaneous Multithreading

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

is
to

re

il
o

a
d

id
iv

im
u

l

ia
d

d
/i
s
u

b

is
to

re

il
o

a
d

id
iv

im
u

l

ia
d

d
/i
s
u

b

is
to

re

il
o

a
d

id
iv

im
u

l

ia
d

d
/i
s
u

b

is
to

re

il
o

a
d

id
iv

im
u

l

ia
d

d
/i
s
u

b

is
to

re

il
o

a
d

id
iv

im
u

l

ia
d

d
/i
s
u

b

istoreiloadidivimuliadd/isub

S
lo

w
do

w
n

fa
ct

or
 o

f
ex

am
in

ed
 in

st
r.

 s
tr

ea
m

Co-executed instruction streams

Examined instruction stream

max ILP
med ILP
min ILP

Figure 5.3: Slowdown factors for the co-execution of various integer instruction streams

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

fs
to

re

fl
o

a
d

fd
iv

fm
u

l

fa
d

d
/f

s
u

b

fs
to

re

fl
o

a
d

fd
iv

fm
u

l

fa
d

d
/f

s
u

b

fs
to

re

fl
o

a
d

fd
iv

fm
u

l

fa
d

d
/f

s
u

b

fs
to

re

fl
o

a
d

fd
iv

fm
u

l

fa
d

d
/f

s
u

b

fs
to

re

fl
o

a
d

fd
iv

fm
u

l

fa
d

d
/f

s
u

b

fstorefloadfdivfmulfadd/fsub

S
lo

w
do

w
n

fa
ct

or
 o

f
ex

am
in

ed
 in

st
r.

 s
tr

ea
m

Co-executed instruction streams

Examined instruction stream

max ILP
med ILP
min ILP

Figure 5.4: Slowdown factors for the co-execution of various
oating-point instruction
streams

CHAPTER 6
Experimental Results

6.1 Experimental results for Fast Indexing

6.1.1 Execution Environment

In this section we present experimental results using Matrix Multiplication, LU-decomposition,
SSYR2K, SSYMM and STRMM as benchmarks. There are two types of experiments: actual
execution times of optimized codes using non-linear layouts and simulations using the Sim-
pleScalar toolkit [LW94]. Firstly, the experiments were performed on three di�erent platforms:
an UltraSPARC II 450 machine, an SGI/Cray Origin2000 multiprocessor, and an Athlon XP
2600+ PC. The hardware characteristics are described in tables B.1 and B.2 of appendix B.

For the UltraSPARC and the SGI Origin platforms we used the cc compiler, �rst without any
optimization
ags (cc -xO0), in order to study the clear e�ect of di�erent data layouts, avoiding
any confusing results due to compiler optimizations. Then, we used the highest optimization level
(-fast -xtarget=native), which includes memory alignment, loop unrolling, software pipeline and
other
oating point optimizations. The experiments were executed for various array dimensions
(N) ranging from 16 to 2048 elements, and tile sizes (step) ranging from 16 to N elements,
to reveal the potential of our optimization algorithm both on data sets that �t and do not
�t in cache. In the Athlon XP platform the gcc compiler has been used, �rstly without any
optimization
ags (gcc -O0) and then, at the highest optimization level (-O3).

We implemented 5 di�erent codes: Blocked array Layouts using our Mask theory for ad-
dress computation (MBaLt), LMO (Lmo), L4D (L4d) of Chatterjee's approach and the Kan-
demir's method [KRC99] using both 2-dimensional arrays (tiled2D) and 1-dimensional arrays
(tiled1D).Measured times do not concern runtime layout transformation from linear to blocked
ones, because a single layout for all instances of each speci�c array is selected, which optimizes
all possible references for the arrays.

86 Experimental Results

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBalt
tiled1D
tiled2D

L4d
Lmo

Figure 6.1: Total execution results in matrix multiplication (-xO0, UltraSPARC)

 0

 100

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBalt
tiled1D
tiled2D

L4d
Lmo

Figure 6.2: Total execution results in matrix multiplication (-fast, UltraSPARC)

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
tiled1D
tiled2D

L4d
Lmo

Figure 6.3: Total execution results in matrix multiplication (-fast, SGI Origin)

6.1.2 Time Measurements

For the Matrix Multiplication benchmark, we compared our method (MBaLt) for the best
performance tile size, with the ones proposed in the literature [KRC99]. In �gure 6.1 the

6.1 Experimental results for Fast Indexing 87

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
tiled1D
tiled2D

L4d

Figure 6.4: Total execution results in LU-decomposition (-xO0, UltraSPARC)

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt_hand_opt

tiled1D
tiled2D

L4d

Figure 6.5: Total execution results in LU-decomposition (-fast, UltraSPARC)

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand_opt

tiled1D
tiled1D hand_opt

L4d

Figure 6.6: Total execution results in LU-decomposition for larger arrays and hand opti-
mized codes (-fast, SGI Origin)

88 Experimental Results

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
tiled2D

L4d

Figure 6.7: Total execution results in SSYR2K (-xO0, UltraSPARC)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt-hand_opt

tiled2D
tiled2D-fine

tiled2D-hand_opt
L4d

Figure 6.8: Total execution results in SSYR2K (-fast, UltraSPARC)

execution time of our method is almost 25% less than the one achieved using the optimal code
from Kandemir et al for 2-dimensional arrays (tiled2D). In fact, since current compilers do not
support non-linear (blocked) array layouts and, as a result, in the implementation of our methods
we use one-dimensional arrays, the comparison should be done with one-dimensional arrays
(tiled1D). In this case, MBaLt over-exceeds by 60%. Chatterjee's implementation performs
worse than tiled2D, even though the L4D array layout is in practice the same as MBaLt, except
for data are indexed through four-dimensional arrays, instead of the one-dimensional ones used
in our approach. The performance degradation is due to the much more complicated memory
location scheme used by four-dimensional arrays.

Using the -fast optimization level (�gure 6.2), MBaLt gives stable performance as its graph
increases smoothly when array sizes increase, due to independence on con
ict misses. The tiled
version of the benchmark, (especially in LU-decomposition and SSYR2K), is prone to such kind
of misses, which can not be easily predicted, since sharp
uctuations occur in performance for
speci�c matrix sizes. Furthermore, comparing �gures 6.1 and 6.2, we conclude that the simpler

6.1 Experimental results for Fast Indexing 89

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand-opt

tiled2D
tiled2D hand-opt

Figure 6.9: Total execution results in SSYMM (-xO0, UltraSPARC)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand-opt

tiled2D
tiled2D hand-opt

Figure 6.10: Total execution results in SSYMM (-fast, UltraSPARC)

the initial code is, the better optimization the -fast level can bring. Thus, standard compiler
options are not enough, when optimizing complex codes. Applying hand optimization (e.g. loop
unrolling and data prefetching) in conjuction with -fast optimization level, proves to be the
best technique for achieving e�cient performance (see hand-optimized performance of MBaLt:
MBaLt-hand opt in �gure 6.6).

Although the MBalt code is larger in terms of instruction lines, it takes less to execute, since
boolean operations are used for address computation. Furthermore, array padding does not
a�ect the performance, since execution time increases regularly analogously to the actual array
sizes. The reader can verify that no sharp peaks occur in the execution time plots. Delving
into the assembly code, one-dimensional arrays are more e�ciently implemented, than greater
dimension ones, since they require for fewer memory references to �nd the array elements. On the
other hand, �nding the storage location of an array element in non-linear layouts needs a lot of
computation. Consequently, what we achieved by the proposed implementation is handling one-
dimensional arrays without posing any additional burden due to address computation, namely

90 Experimental Results

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand-opt

tiled2D
tiled2D hand-opt

Figure 6.11: Total execution results in SSYMM (-O0, Athlon XP)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand-opt

tiled2D
tiled2D hand-opt

Figure 6.12: Total execution results in SSYMM (-O3, Athlon XP)

one-dimensional arrays with low address computation cost.

The above results are also veri�ed by the LU-decomposition, SSYR2K, SSYMM and STRMM
benchmarks (�gures 6.4 - 6.14). Additionally, we notice that in LU-decomposition, the use of
blocked array layouts in combination with our e�cient indexing not only provides an average of
15% reduction in time measurements (when no optimization is applied), but also smooths the
sharp peaks that come up due to con
ict misses in the simple tiled code. The reduction is even
better (can reach even 30%) with -fast
ag. Observing that tiled1D (in the matrix multiplication
benchmark) and LU-decomposition) outperform MBaLt when -fast optimization is applied, we
conducted experiments with larger arrays than 2048× 2048. Figure 6.6 illustrates that MBaLt
is advantageous.

In the SSYR2K benchmark (�gures 6.7 and 6.8), we searched for the best tile size among a
wide range of values (not only for power of 2 values), when linear layouts are used (tiled2D-�ne).
We notice that in all previous tiled codes we conducted experiments for tile sizes equal to some
power of 2, in order to agree with MBaLt implementation. As graphs for tiled and tiled-�ne are

6.1 Experimental results for Fast Indexing 91

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand-opt

tiled2D
tiled2D hand-opt

Figure 6.13: Total execution results in STRMM (-xO0, UltraSPARC)

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

MBaLt
MBaLt hand-opt

tiled2D
tiled2D hand-opt

Figure 6.14: Total execution results in STRMM (-fast, UltraSPARC)

practically identical, execution times prove that no burden is imposed when only a power of 2
for tile sizes is used.

Finally, as far as tile sizes are considered, MBaLt versions perform better for small tile sizes,
thus, keep data mainly in L1 cache. Best tile sizes remain �xed for almost for all array sizes. On
the other hand, tiled versions (tiled1D and tiled2D) give minimum execution time for di�erent
tile sizes as array sizes change.

6.1.3 Simulation results

In order to verify the results of time measurements, we applied the program codes of matrix-
multiplication (MBaLt, tiled2D, tiled1D) and the ones of LU-decomposition (non-tiled, tiled,
MBaLt) to the SimpleScalar 2.0 toolkit, for both the cache characteristics of the UltraSPARC
and the SGI Origin machines. We measured the data L1 (dl1), uni�ed L2 (ul2) cache and data
TLB (dtlb) misses, for various values of N ranging from 16 to 1024 and step from 8 to N , at

92 Experimental Results

Misses in dl1 cache

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08
1E+09
1E+10

16 32 64 128 256 384 512 640 768 896 1024

 dimension of matrices

nu
m
be
r o

f m
is
se
s

MBaLt
tiled2D
tiled1D

 Misses in ul2 cache

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

16 32 64 128 256 384 512 640 768 896 1024

dimension of matrices

nu
m
be

r o
f m

is
se
s

Misses in data TLB

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

16 32 64 128 256 384 512 640 768 896 1024

dimension of matrices

nu
m
be
r o

f m
is
se
s

Figure 6.15: Misses in Data L1, Unified L2 cache and data TLB for matrix multiplication
(UltraSPARC)

the standard optimization level. The scale in vertical axis, in all plots, is a logarithmic one.

The results show that dl1 misses are reduced in matrix multiplication for tile size 32 × 32

because data �t in the L1 cache. For the same reason, for step = 1024 misses in ul2 cache
increase sharply, compared to ul2 misses for step = 512. The minimum value
uctuates with
the problem size, because it depends on factors such as con
ict misses which can not be easily
foreseen. Figures 6.15 to 6.17 show the number of misses for di�erent array sizes. In all cases,
MBaLt gives the least misses. The number of accesses o�er the same conclusions, so respective
plots are not presented here, due to lack of space.

Finally, we observed that among all the tile sizes used in the matrix multiplication bench-
mark, in MBaLt the minimum TLB misses occur for a value of step near to 256. This is in
accordance with the minimization of L1 and L2 cache misses. Thus, the reduction of the total

6.2 Experimental Results for Tile Sizes 93

Misses in dl1 cache

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08
1E+09
1E+10
1E+11

6 4 2 5
6

5 1
2

7 6
8

1 0
2 4

1 2
8 0

1 5
3 6

1 7
9 2

2 0
4 8

2 3
0 4

2 5
6 0

dimension of matrices

nu
m
be

r o
f m

is
se
s

MBaLt
tiled2D

Misses in ul2 cache

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08
1E+09
1E+10

64 12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

16
64

17
92

19
20

20
48

21
76

23
04

24
32

25
60

26
88

dimension of matrices

nu
m
be

r o
f m

is
se
s

Misses in d-TLB

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08
1E+09
1E+10

6 4 1 2
8

2 5
6

3 8
4

5 1
2

6 4
0

7 6
8

8 9
6
1 0
2 4

1 1
5 2

1 2
8 0

1 4
0 8

1 5
3 6

1 6
6 4

1 7
9 2

1 9
2 0

2 0
4 8

2 1
7 6

2 3
0 4

2 4
3 2

2 5
6 0

2 6
8 8

dimension of matrices

nu
m
be

r o
f m

is
se
s

Figure 6.16: Misses in Data L1, Unified L2 cache and data TLB for LU-decomposition
(UltraSPARC)

time performance is reinforced. On the contrary, in tiled1D and tiled2D the best step size is 128
and 32 respectively while for other values of step, misses increase rapidly.

6.2 Experimental Results for Tile Sizes

6.2.1 Execution Environment

In this section we present experimental results using Matrix Multiplication, LU-decomposition,
SSYR2K, SSYMM and STRMM as benchmarks. There are two types of experiments: actual exe-
cution times of optimized codes using non-linear layouts and simulations using the SimpleScalar's
sim-outorder toolkit [LW94]. Firstly, the experiments were performed on four di�erent platforms:

94 Experimental Results

Misses in dl1 cache

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08
1E+09
1E+10

3 2 6 4 1 2
8

2 5
6

3 8
4

5 1
2

6 4
0

7 6
8

8 9
6
1 0
2 4

1 1
5 2

1 2
8 0

1 4
0 8

1 5
3 6

1 6
6 4
1 . 7

9 2
1 . 9

2 0
2 . 0

4 8

dimension of matrices

nu
m
be

r o
f m

is
se
s

MBaLt
tiled2D

Misses in ul2 cache

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08
1E+09
1E+10

3 2 6 4 1 2
8

2 5
6

3 8
4

5 1
2

6 4
0

7 6
8

8 9
6
1 0
2 4

1 1
5 2

1 2
8 0

1 4
0 8

1 5
3 6

1 6
6 4

1 . 7
9 2

1 . 9
2 0

2 . 0
4 8

dimension of matrices

nu
m
be

r o
f m

is
se
s

Misses in d-TLB

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08
1E+09
1E+10

3 2 6 4 1 2
8

2 5
6

3 8
4

5 1
2

6 4
0

7 6
8

8 9
6
1 0
2 4

1 1
5 2

1 2
8 0

1 4
0 8

1 5
3 6

1 6
6 4
1 . 7

9 2
1 . 9

2 0
2 . 0

4 8

dimension of matrices

nu
m
be

r o
f m

is
se
s

Figure 6.17: Misses in Data L1, Unified L2 cache and data TLB for LU-decomposition
(SGI Origin)

an UltraSPARC II 450 machine, a Pentium III Symmetric Multiprocessor (SMP),an Athlon XP
2600+, and a Dual SMT Xeon (Simultaneous Multi-Threading supported).

The hardware characteristics are described in tables B.1 and B.2 of appendix B. For the
UltraSPARC platform we used the SUN cc compiler, at the highest optimization level (-fast
-xtarget=native), which includes memory alignment, loop unrolling, software pipeline and other

oating point optimizations. In the Pentium III, Athlon and Xeon the gcc compiler has been
used.

The experiments were executed for various array dimensions (N) ranging from 64 to 4096
elements, and tile sizes (step) ranging from 16 to N elements, to reveal the potential of our

6.2 Experimental Results for Tile Sizes 95

optimization tile size selection algorithm both on data sets that �t and do not �t in cache.

6.2.2 Experimental veri�cation

Firstly, we executed the Matrix Multiplication kernel, applying fast indexing to our Blocked
Array Layouts. The execution results verify the cache and TLB behaviour of section ??: L1
cache misses seem to dominate total performance (we achieve maximum performance when
T = sqrtCL1). Only a limited range of values is depicted in �gure 6.18, to make the image
readable.

 10
 100

 1000

 2400
 2700

 3000
 3300

 3600
 3900

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

Norm. Performance (PTi
/PT64

)

2304
2432
2560
2688
2816
2944
3072
3200
3328
3456
3584
3712
3840
3968
4096

tile size

matrix dimension

Norm. Performance (PTi
/PT64

)

Figure 6.18: Execution time of the Matrix Multiplication kernel for various array and tile
sizes (UltraSPARC, -fast)

6.2.3 MBaLt performance: Tile size selection

Execution and simulation results of this optimized version are illustrated in �gure 6.19. Blocked
array layouts, when appropriately combined with loop optimization techniques, have optimal
tile size T =

√
CL1. In the MBaLt code, only square tiles can be used, with dimension sizes to

be a power of 2. That is, for the UltraSPARC II architecture, the tile size is T = 64.

6.2.4 MBaLt vs linear layouts

In this section we compare the MBaLt (Blocked array layouts with use of binary masks) per-
formance, with a fully optimized version of linear layouts (it concerns the best performance
algorithm proposed in the literature [KRC99]). We investigate the exact reasons that boost
performance when blocked layouts are implemented.

As it can be clearly discriminated in �gure 6.20, linear layouts have unstable performance,
while array sizes vary. Notice that we choose either row-major or column-major storage of array

96 Experimental Results

Total penalty due to cache & TLB misses and mispredicted branches vs. execution time

32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8 32 64 12
8

128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

0,0E+00

2,0E+09

4,0E+09

6,0E+09

8,0E+09

1,0E+10

1,2E+10

Array dimension

p
en

al
ty

 (
cl

o
ck

 c
yc

le
s)

0

50

100

150

200

250

tile dimension

ex
eu

ti
o

n
 t

im
e

(s
ec

)

branches

DTLB

UL2

DL1

exec time

Figure 6.19: Total performance penalty due to data L1 cache misses, L2 cache misses and
data TLB misses for the Matrix Multiplication kernel with use of Blocked array Layouts and
e�cient indexing. The real execution time of this benchmark is also illustrated (UltraSPARC)

Total penalty due to cache & TLB misses and mispredicted branches vs. execution time

256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920

16 32 64 16 32 64 16 32 64 25
6 16 32 64 16 32 64 16 32 64 16 32 64 51
2 16 32 64 16 32 64 16 32 64 16 32 64 51
2 16 32 64 16 32 64 16 32 64

0,0E+00

2,0E+09

4,0E+09

6,0E+09

8,0E+09

1,0E+10

1,2E+10

1,4E+10

1,6E+10

Array dimension

p
en

al
ty

 (
cl

o
ck

 c
yc

le
s)

0

50

100

150

200

250

tile dimension

ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

branches

DTLB

UL2

DL1

exec time

Figure 6.20: Total performance penalty and real execution time for the Matrix Multipli-
cation kernel (linear array layouts - UltraSPARC)

elements in memory, to match as well as possible the access order of the benchmark code. This
instability is due to the non-easily predicted con
ict misses. Techniques, such as padding or
copying that should be used to avoid pathological array sizes in linear layouts, there is no need
to be applied in Blocked array layouts. Consequently, optimizing a nested loop code proves to
be a much more standard process in MBaLt case.

Analytical search of degradation causes in linear layouts are represented graphically in �g-
ure 6.21. A limited range of values are illustrated here, to make image as clear as possible.
In both cases (MBaLt & kand), the best performance tile sizes are chosen. Data L1 misses in
linear array layouts can be even one order of magnitude more than in MBaLt, due to con
ict
misses that is too complicated to be avoided. Data TLB misses are signi�cantly reduced in
MBaLt (they actually reach the minimum possible, given the TLB capacity) The access code
pattern matches exactly the storage order and array elements that belong to the same tile, are
located in T 2

P consecutive pages. In the worst case they may be found on the border of T 2

P + 1

6.2 Experimental Results for Tile Sizes 97

pages. L2 misses are slightly increased in MBaLt. However, performance improvement due to
the reduced number of L1 cache and TLB misses is so determinative, that this L2 increase is not
even worthwhile. Finally, the number of mispredicted branches are also reduced in most cases
of MBaLt, because maximum performance is usually achieved by smaller tiles in linear layouts,
in order to avoid interference misses.

Linear layout (kand) vs. Blocked layout (MBaLt)

6432641664326451264326416
1920179216641280 1408 1536

MBaLtkandMBaLtkandMBaLtkandkand MBaLt kand MBaLt kand MBaLt

0,E+00

2,E+09

4,E+09

6,E+09

8,E+09

1,E+10

1,E+10

1,E+10

2,E+10

Array dimension

p
en

al
ty

 (
cl

o
ck

 c
yc

le
s)

0

50

100

150

200

250

tile dimension

ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

branches

dtlb

ul2

dl1

exec time

Figure 6.21: The relative performance of the two di�erent data layouts (UltraSPARC)

 1

 2

 3

 4

 5

 6

 10 100

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (
P

T
=

i/P
T

=
64

)

tile size

STRMM
SSYR2K
SSYMM
LU
matrixMul

Figure 6.22: Normalized performance of 5 benchmarks for various array and tile sizes
(UltraSPARC)

6.2.5 More Experiments

To validate the above results, we implemented �ve di�erent benchmarks executed in four di�erent
platforms. Experiments are conducted with Matrix Multiplication, LU-decomposition, SSYR2K,
SSYMM and STRMM benchmarks from BLAS3 routines.

In UltraSPARC II architecture, as veri�ed in �gure 6.22 all �ve cases of tested benchmarks,
that the execution time is minimized when T = 64. This is the tile size that just �ts in
the direct mapped L1 cache (L1 cache thrashing is restrained until this point). Figure 6.22
illustrates the normalized performance of the tested benchmarks, shifted along the vertical axis,

98 Experimental Results

so that di�erent codes do not overlap That is, performance of TN=(any tested value)
performance of TN=64 + x, where x =

{0, 1, 2, 3, 4}, TN ∈ [8, N] and N ∈ [64, 4096]. In �gure 6.22, depicted values of TN ∈ [16, 256],
zooming in the area of maximum performance.

The Athlon XP and the Pentium III machine have di�erent architecture characteristics.
Associativity of caches eliminates all con
ict misses. As a result, L1 cache misses are signi�cantly
reduced. L2 cache is multy-way set associative, too. On the other hand, it is quite smaller in
capacity than the one of UltraSPARC, which brings many more L2 cache misses. However, the
reduced number of L1+L2 misses achieved for tile sizes that �t in L1 cache can not be achieved
elsewhere This situation makes L1 misses to dominate overall performance again (see �gure 6.23).
The optimal tile size is the one that meets the requirement: T 2 = CL1. The performance graphs
are illustrated in �gures 6.24 and 6.25. Notice that in the Pentium III experiments (�gure ??)
x = {0, 4, 8, 12, 16} while in the Athlon XP (�gure 6.25) x = {0, 2, 4, 6, 8}. These are the needed
values to avoid overlapping among the di�erent benchmark plots. In both �gures the depicted
values of TN ∈ [32, 512], zooming in the area of maximum performance.

The dual Xeon platform needed special attention, in order to e�ciently exploit the hyper-
threading technology. We conducted three di�erent experiments. Firstly, the serial blocked
algorithm of Matrix Multiplication (MBaLt code - with use of fast indexing) was executed. Sec-
ondly, we enabled hyperthreading running 2 threads in the same physical cpu. For large tile
sizes, execution times obtained with the 2threads-MBaLt version are quite larger than those of
the serial version. Smaller tile sizes lead to more mispredicted branches and loop boundary cal-
culations, thus increasing the overhead of tiling implementation. In the case of 2threads-MBaLt,
this tiling overhead gets almost doubled, since the two threads are executing the same code in
an interleaved fashion. In other words, the total overhead introduced overlaps the extra bene�ts
we have with the simultaneous execution capabilities of the hyperthreaded processor. This is
not the case for larger tile sizes, where the tiling overhead is not large enough to overlap the
advantages of extra parallelism. Figure 6.26 illustrates only best performance measurements for
each di�erent array dimension (tile sizes are equal to the one minimize execution time). The
serial-MaLt version seems to have better performance compared to the 2threads-MBaLt version,
as execution time is minimized for small tile sizes. Finally, we executed a parallel version of
matrix multiplication MBaLt code (4threads-MBaLt), where 2 threads run on each of the 2
physical cpus, that belong to the same SMP. Execution time is reduced, and performance speed
up reaches 44% compared to the serial-MBaLt version.

As far as the optimal tile size is concerned, serial MBaLt obey to the general rule, this is
Toptimal =

√
CL1 = 64. However, when hyperthreading had been enabled, Toptimal seams to be

shifted to the just smaller size, in order to make room in the L1 cache for the increased number
of concurrently used array elements. This behaviour is observed, both when two threads run on
the same physical cpu (2threads-MBaLt), as well as in the parallel version (4threads-MBaLt)
where Toptimal = 32 (�gures 6.27, 6.28 and 6.29). Note that for the 2threads-MBaLt version

6.3 Experimental Framework and Results on SMTs 99

Total penalty due to cache & TLB misses and mispredicted
branches

512 640 768 896 1024 1152 1280

10
2451
2

25
6

12
86432

10
2451
2

25
6

12
86432

10
2451
2

25
6

12
8643251
2

25
6

12
8643251
2

25
6

12
8643251
2

25
6

12
8643251
2

25
6

12
86432

0,0E+00

1,0E+09

2,0E+09

3,0E+09

4,0E+09

5,0E+09

6,0E+09

7,0E+09

8,0E+09

9,0E+09

1,0E+10

Array dimension

p
en

al
ty

 (
cl

o
ck

 c
yc

le
s)

tile dimension

branches

DTLB

UL2

DL1

Figure 6.23: Total performance penalty for the Matrix Multiplication kernel (Pentium
III)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 100

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (
P

T
=

i/P
T

=
64

)

tile size

STRMM
SSYR2K
SSYMM
LU
matrixMul

Figure 6.24: Pentium III - Normalized performance of �ve benchmarks for various array
and tile sizes

Toptimal = 32 when N < 2048. For larger arrays, the 2threads-MBaLt version behaves similarly
to the serial one, �lling the whole L1 cache with useful array elements.

6.3 Experimental Framework and Results on SMTs

This section evaluates and contrasts software prefetching and thread-level parallelism techniques.
It also examines the e�ect of thread synchronization mechanisms on multithreaded parallel
applications that are executed on a single SMT processor.Finally, we examine the e�ect of
maintaining a single thread per parallel application and embodying precomputation in it, to
avoid any synchronization overheads and static resource partitioning.

The experimental results demonstrate that signi�cant performance improvements are really

100 Experimental Results

 2

 4

 6

 8

 10

 100

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (
P

T
=

i/P
T

=
64

)

tile size

STRMM
SSYR2K
SSYMM
LU
matrixMul

Figure 6.25: Athlon XP - Normalized performance of �ve benchmarks for various array
and tile sizes

hard to be achieved for optimized parallel applications running on SMT processors. We tested
two di�erent con�gurations. Firstly, we balanced the computational workload of a parallel bench-
mark on two threads, statically partitioning the iteration space to minimize dynamic scheduling
overhead. Secondly, we ran a main computation thread in parallel with a helper-prefetching
thread. The latter was spawned to speculatively precompute L2 cache misses. Synchronization
of the two threads is essential, in order to avoid the helper thread from running too far ahead,
evicting useful data from the cache. The above two con�gurations were tested on memory
intensive benchmarks, both with regular and irregular or random access patterns.

We experimented on Intel Xeon processor enabled with HT technology. The hardware char-
acteristics can be found in table B.2 of appendix B. The performance monitoring capabilities of
the processor were extended and a simple custom library was developed, so that the performance
counters could be programmed to select events that are quali�ed by logical processors.

For each of the multithreaded execution modes, measurements consider, apart from the total
execution time needed for real work to be completed, L2 misses, resource stall cycles (waiting to
enter into the store bu�er) and µops retired. Note that in the pure software prefetch method,
only the L2 misses of the working thread are presented. In all other cases and events, the sum
of both threads (working and/or prefetching) is calculated.

We evaluate performance results using two computational kernels, Matrix Multiplication
and LU-decomposition, and two NAS benchmarks, CG and BT. In Matrix Multiplication (MM)
and LU-decomposition (LU), we present experimental results for 4096 × 4096 matrices, while
in CG and BT we consider Class A problem sizes, (which means 14000 elements for CG and
643 elements for BT). In MM and LU, we applied tiling choosing tiles that completely �t in
L1 cache, as discussed in chapter 4. Furthermore, in MM we used blocked array layouts (non-
linear layouts) with binary masks [AK04a] and applied loop unrolling. The implementations of

6.3 Experimental Framework and Results on SMTs 101

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1000 1500 2000 2500 3000 3500 4000

E
xe

cu
tio

n
T

im
e

(s
ec

)

dimension of matrices

serial-MBaLt
2threads-MBaLt
4threads-MBaLt

Figure 6.26: Xeon - The relative performance of the three di�erent versions

 10

 100

 1200
 1500

 1800
 2100

 2400
 2700

 3000
 3300

 3600
 3900

 1

 1.5

 2

 2.5

 3

Norm. Performance (PTi
/PTmin

)

1152
1280
1408
1536
1664
1792
1920
2048
2176
2304
2432
2560
2688
2816
2944
3072
3200
3328
3456
3584
3712
3840
3968
4096

tile size

matrix dimension

Norm. Performance (PTi
/PTmin

)

Figure 6.27: Xeon - Normalized performance of the matrix multiplication benchmark for
various array and tile sizes (serial MBaLt)

CG (Conjugate gradient method for �nding smallest eigenvalue of large-scale sparse symmetric
positive de�nite matrix) and BT (CFD application using 5*5block ADI iteration) were based
on the OpenMP C versions of NPB suite version 2.3 provided by the Omni OpenMP Compiler
Project [Ope03]. We transformed these versions so that appropriate threading functions were
used for work decomposition and synchronization, instead of OpenMP constructs. Both CG and
BT are characterized by random memory access patterns, while the latter exhibits somewhat
better data locality. All program codes were compiled with gcc 3.3.5 compiler using the O2
optimization level, and linked against glibc 2.3.2.

The TLP versions of the codes are based on coarse-grained work partitioning schemes (tlp-
coarse), where the total amount of work is statically balanced across the participant threads
(e.g., di�erent tiles assigned to di�erent threads in MM and LU). The SPR versions use prefetch-
ing to tolerate cache misses, following the scheme we described in section 5.3. In the pure
prefetching version (spr), the whole workload is executed by just one thread, while the second
is just a helper thread that performs prefetching of the next data chunk in issue. In the hybrid

102 Experimental Results

 10

 100

 1200
 1500

 1800
 2100

 2400
 2700

 3000
 3300

 3600
 3900

 1

 1.5

 2

 2.5

 3

Norm. Performance (PTi
/PTmin

)

1152
1280
1408
1536
1664
1792
1920
2048
2176
2304
2432
2560
2688
2816
2944
3072
3200
3328
3456
3584
3712
3840
3968
4096

tile size

matrix dimension

Norm. Performance (PTi
/PTmin

)

Figure 6.28: Xeon - Normalized performance of the matrix multiplication benchmark for
various array and tile sizes (2 threads - MBaLt)

 10

 100

 1200
 1500

 1800
 2100

 2400
 2700

 3000
 3300

 3600
 3900

 1

 1.5

 2

 2.5

 3

Norm. Performance (PTi
/PTmin

)

1152
1280
1408
1536
1664
1792
1920
2048
2176
2304
2432
2560
2688
2816
2944
3072
3200
3328
3456
3584
3712
3840
3968
4096

tile size

matrix dimension

Norm. Performance (PTi
/PTmin

)

Figure 6.29: Xeon - Normalized performance of the matrix multiplication benchmark for
various array and tile sizes (4 threads - MBaLt)

prefetching version (spr+work), the workload is partitioned in a more �ne-grained fashion with
both threads performing computations on the same data chunk, while one of them takes on the
prefetching of the next data chunk. This latter parallelization scheme was applicable only in
MM and CG.

Figure 6.30 presents the experimental results for our four benchmarks. HT technology fa-
vored a speedup of 5%− 6% only, compared to the serial optimized version, in the case of NAS
benchmarks, when applying the TLP scheme. In the SPR versions, we achieved a really signif-
icant reduction in L2 misses of the working thread in all, apart from BT case. However, this
reduction could not bring an overall execution time speedup. The implementation of specula-
tive precomputation requires extra instructions to be executed, which means extra issue slots
to be occupied. Normally, these instructions are hidden in the issue slots that would anyway
remain idle. In optimized benchmarks, where there is already a quite high issuing rate of in-
structions, the idle issue slots are not enough for prefetching to be executed without burdening
the issuing of instructions from the working thread. As Figure 6.30(d) depicts, in these cases,

6.3 Experimental Framework and Results on SMTs 103

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

BTCGLUMM

S
pe

ed
up

serial
tlp-coarse

spr
spr+work

(a) Speedup

 1e+06

 1e+07

 1e+08

 1e+09

BTCGLUMM

L2
 m

is
se

s

serial
tlp-coarse
spr
spr+work

(b) L2 misses

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

BTCGLUMM

S
ta

ll
cy

cl
es

serial
tlp-coarse
spr
spr+work

(c) Resource stall cycles

 1e+10

 1e+11

 1e+12

BTCGLUMM

uo
ps

serial
tlp-coarse

spr
spr+work

(d) µops retired

Figure 6.30: SMT experimental results in the Intel Xeon Architecture, with HT enabled

there was a noticable increase in the total number of µops, due to the instructions required to
implement prefetching. For LU and CG, speci�cally, the total µops were almost double than
those of the serial case. As designated by the increased stall cycles in the spr case of all bench-
marks compared to their serial versions, SPR method results in resource contention, and �nally
performance degradation.

6.3.1 Further Analysis

Table 6.1 presents the utilization of the busiest processor execution subunits, while running the
reference applications. The �rst column (serial) contains results of the serial versions. The sec-
ond column (tlp) presents the behavior of one of two threads for the TLP implementation (results
for the other thread are identical). The third column (spr) presents statistics of the prefetching
thread in the SPR versions. All percentages refer to the portion of the total instructions of each
thread that used a speci�c subunit of the processor. The statistics were generated by pro�l-
ing the original application executables using the Pin binary instrumentation tool [LCM+05],
and analyzing for each case the breakdown of the dynamic instruction mix, as recorded by the

104 Experimental Results

tool. Figure 6.31([Int]) presents the main execution units of the processor, together with the
issue ports that drive instructions into them. Our analysis examines the major bottlenecks that
prevent multithreaded implementations from achieving some speedup.

Compared to the serial versions, TLP implementations do not generally change the mix for
various instructions. Of course, this is not the case for SPR implementations. For the prefetcher
thread, not only the dynamic mix, but also the total instruction count, di�er from those of the
worker thread. Additionally, di�erent memory access patterns require incomparable e�ort for
address calculations and data prefetching, and subsequently, di�erent number of instructions.

Instrumented thread

EXECUTION UNIT serial tlp spr

MM

ALU0+ALU1:
FP ADD:
FP MUL:

MEM LOAD:
MEM STORE:

27.06%
11.70%
11.70%
38.76%
12.07%

26.26%
11.82%
11.82%
27.00%
12.02%

37.56%
0.00%
4.13%

58.30%
20.75%

Total instructions (×109): 4.59 2.27 0.20

LU

ALU0+ALU1:
FP ADD:
FP MUL:

MEM LOAD:
MEM STORE:

38.84%
11.15%
11.15%
49.24%
11.24%

38.84%
11.15%
11.15%
49.24%
11.24%

38.16%
0.00%
0.00%

38.40%
22.78%

Total instructions (×109): 3.21 1.62 3.26

CG

ALU0+ALU1:
FP ADD:
FP MUL:

FP MOVE:
MEM LOAD:

MEM STORE:

28.04%
8.83%
8.86%

17.05%
36.51%
9.50%

23.95%
7.49%
7.53%

14.05%
45.71%
8.51%

49.93%
0.00%
0.00%
0.00%

19.09%
9.54%

Total instructions (×109): 11.93 7.07 0.17

BT

ALU0+ALU1:
FP ADD:
FP MUL:

FP MOVE:
MEM LOAD:

MEM STORE:

8.06%
17.67%
22.04%
10.51%
42.70%
16.01%

8.06%
17.67%
22.04%
10.51%
42.70%
16.01%

12.06%
0.00%
0.00%
0.00%

44.70%
42.94%

Total instructions (×109): 44.97 22.49 8.40

Table 6.1: Processor subunits utilization from the viewpoint of a speci�c thread

In the MM benchmark the most speci�c characteristic is the large number of logical instruc-
tions used: at about 25% of total instructions in both serial and TLP versions. This is due
to the implementation of blocked array layouts with binary masks that were employed for this

6.3 Experimental Framework and Results on SMTs 105

ADD/SUBLogicStore dataBranches FP moveFXCHFP Store data ADD/SUB ShiftRotate FP_ADDFP_MULFP_DIV... LoadsPrefetch Store addressALU0 (x2) FP_MOVE ALU1 (x2) INTEGER FP Execute MEM_LOAD MEM_STOREPort 0 Port 1 Port 2 Port 3
Figure 6.31: Instruction issue ports and main execution units of the Xeon processor

benchmark. Although the out-of-order core of the Xeon processor possesses two ALU units
(double speed), among them only ALU0 can handle logical operations. As a result, concurrent
requests for this unit in the TLP case, will lead to serialization of corresponding instructions,
without o�ering any speedup. In the SPR case of LU, the prefetcher executes at least the same
number of instructions as the worker, and also puts the same pressure on ALUs. This is due to
the non-optimal data locality, which leads prefetcher to execute a large number of instructions
to compute the addresses of data to be brought in cache. These facts translate into major
slowdowns for the SPR version of LU, despite any signi�cant L2 misses reduction.

As can be seen in Figure 6.30, TLP mode of BT benchmark was one of few cases that
gave us some speedup. The relatively low usage and thus contention on ALUs, in conjunction
with non-harmful co-existence of faddmul streams (as Table 5.3 depicts) which dominate other
instructions, and the perfect workload partitioning, are among the main reasons for this speedup.

106 Experimental Results

CHAPTER 7
Conclusions

Due to the constantly dilating gap between memory latency and processor speed, most applica-
tions still waste much of their execution time, waiting for data to be fetched from main memory.
Thus, hiding or minimizing the average memory latency has become a key challenge for achieving
high performance. Memory hierarchy was introduced to alleviate this bottleneck, bringing the
most recently used data close to the processor core. While caches reduce the memory latency,
software techniques attempt to exploit locality of references for iterative codes to reduce cache
misses.

This thesis addresses the question of how e�ective static (compile-time) software optimization
techniques can be, in single-processor platforms. We deal with blocked array layouts, applied
on numerical codes with iterative instruction streams. Of course, it does not su�ce to identify
the optimal blocked layout for each speci�c array. We also need an automatic and quick way to
generate the mapping from the multidimensional iteration indices to the correct location of the
respective data element in the linear memory. Blocked layouts are very promising, subject to an
e�cient address computation method. Any method of fast indexing for non-linear layouts will
allow compilers to introduce such layouts along with row or column-wise ones, therefore further
reducing memory misses.

7.1 Thesis Contributions

The key results of this thesis are the following:

1. In order to facilitate the automatic generation of tiled code that accesses blocked array
layouts, we propose a very quick and simple address calculation method of the array indices.
We can adopt any out of four di�erent proposed types of blocked layouts, and apply a
dilated integer indexing, similar to Morton-order arrays. Thus, we combine additional
data locality due to blocked layouts, with fast access per any array element, since simple
boolean operations are used to �nd its right location in linear physical memory. Since array

108 Conclusions

data are now stored block-wise, we provide the instruction stream with a straightforward
indexing to access the correct elements. The method is very e�ective at reducing cache
misses, since the deployment of the array data in memory follows the exact order of accesses
by the tiled instruction code, achieved at no extra runtime cost.

2. We provide a theoretical analysis for the cache and TLB performance of blocked data
layouts. Following this analysis, the optimal tile size that maximizes L1 cache utilization,
should completely �t in the L1 cache, to avoid any interference misses. We prove that when
applying optimization techniques, such as register assignment, array alignment, prefetching
and loop unrolling, tile sizes equal to L1 capacity, o�er better cache utilization, even for
loop bodies that access more than just one array. Increased self- or/and cross-interference
misses are now tolerated through prefetching. Such larger tiles also reduce lost CPU cycles
due to less mispredicted branches.

3. We evaluated the e�ciency of blocked array layouts combined with other software opti-
mization techniques for various hardware platforms. The experimental and simulation
results illustrate that speci�c optimizations should be matched with speci�c architec-
tural characteristics. It is worth mentioning, that on SMT processors single-threaded
versions exploit structural resources in an optimal way, issuing instruction streams at a
high throughput, so that thread-level parallelism techniques could not bring any further
performance improvement in the numerical iterative codes.

Appendices

APPENDIX A
Table of Symbols

Explanation symbol

L1 cache : CL1

L1 cache line : L1

L1 miss penalty: pL1

total L1 cache misses : M1

L2 cache : CL2

L2 cache line : L2

L2 miss penalty: pL2

total L2 cache misses : M2

TLB entries (L1): E

TLB entries (L2): E2

page size : P

TLB miss penalty: pTLB

total TLB misses : MTLB

mispred. branch penalty: cbr

array size : N

tile size : T

tiles per array line : x = N
T

Table A.1: Table of Symbols

112 Table of Symbols

APPENDIX B
Hardware Architecture

UltraSPARC Pentium III SGI Origin R10K

CPU freq. : 400MHz 800MHz 250MHz

L1 data cache : 16KB 16KB 32 KB

L1 associativity: direct-mapped 4-way set asssoc. 2-way set assoc.

L1 cache line : 32B 32B 64B

L1 miss penalty: 8 cc 4 cc 6 cc

L2 cache : 4MB 256KB 4MB

L2 cache : direct-mapped 8-way set asssoc. 2-way set assoc.

L2 cache line : 64B 64B 128B

L2 miss penalty: 84 cc 60 cc 100 cc

TLB entries (L1): 64 addresses 64 addresses 64 addresses

TLB entries (L2):

TLB asssociativity: fully assoc. 4-way set asssoc. fully assoc.

page size : 8KB 4KB 32KB

TLB miss penalty: 51 cc 5 cc 57 cc

mispredicted

branch penalty: 4 cc 10-15 cc 4 cc

Table B.1: Table of machine characteristics, used for experimentation

114 Hardware Architecture

Athlon XP Xeon

CPU freq. : 2GHz 2,8GHz

L1 cache : 64KB 16KB

2-way set asssoc. 8-way set asssoc.

L1 line : 64B 64/128B

L1 miss penalty: 3 cc 4 cc

L2 cache : 256KB 1MB

16-way set asssoc. 8-way set asssoc.

L2 line : 64B 64B

L2 miss penalty: 20 cc 18 cc

TLB entries (L1): 40 addresses 64 addresses

TLB entries (L2): 256 addresses

page size : 4KB 4KB

TLB miss penalty: 3 cc 30 cc

mispredicted

branch penalty: 10 cc 20 cc

Table B.2: Table of machine characteristics, used for experimentation

APPENDIX C
Program Codes

In the following two types of codes are presented Á. The initial codes, where only loop reordering
has been applied, to achieve optimal loop nesting. Â. The full optimized codes, just before fast
indexing (with binary masks) for blocked array layouts is applied.

C.1 Matrix Multiplication

Á. (We consider that all arrays are row-wise stored)

for (i = 0; i < N; i + +)
for (k = 0; k < N; k + +)
for (j = 0; j < N; j + +)

C[i][j]+ = A[i][k] ∗B[k][j];

Â.

for (ii = 0; ii < N; ii + step)
for (kk = 0; kk < N; kk + step)
for (jj = 0; jj < N; jj + step)
for (i = 0; (i < ii + step && i < N); i + +)
for (k = 0; (k < kk + step && k < N); k + +)
for (j = 0; (j < jj + step && j < N); j + +)

C[i][j]+ = A[i][k] ∗B[k][j];

116 Program Codes

C.2 LU decomposition

Á. (We consider that all arrays are column-wise stored)

for (k = 0; k < N − 1; k + +){
for (i = k + 1; i < N; i + +)

A[i][k] = A[i][k]/A[k][k];
for (j = k + 1; j < N; j + +)
for (i = k + 1; i < N; i + +)

A[i][j]− = A[i][k] ∗A[k][j];
}

Â.

for (kk = 0; kk < N − 1; kk+ = step)
for (jj = kk; jj < N; jj+ = step)
for (ii = kk; ii < N; ii+ = step){
if (ii > kk && jj > kk)

kreturn=(N < (kk + step)?N : (kk + step));
else kreturn = (N < (kk + step)?N : (kk + step))− 1;
for (k = kk; k < kreturn; k + +){

jstart = (k + 1 > jj?k + 1 : jj);
istart = (k + 1 > ii?k + 1 : ii);
if (jstart == k + 1)
for (i = istart; i < ireturn; i + +){

A[i][k] = A[i][k]/A[k][k];
for (j = jstart; (j < jj + step && j < N); j + +)
for (i = istart; (i < ii + step && i < N); i + +)

A[i][j]− = A[i][k] ∗A[k][j];
}

}

C.3 STRMM: Product of Triangular and Square Matrix

Á. (We consider that all arrays are row-wise stored)

for (i = 0; i < N − 1; i + +)
for (k = i + 1; k < N; k + +)
for (j = 0; j < N; j + +)

B[i][j]+ = A[i][k] ∗B[k][j];

C.4 SSYMM: Symmetric Matrix-Matrix Operation 117

Â.

for (ii = 0; ii < N − 1; ii+ = step)
for (kk = ii; kk < N; kk+ = step)
for (jj = 0; jj < N; jj+ = step)
for (i = ii; (i < ii + step &$ i < N − 1); i + +){

kstart = (i + 1 > kk?i + 1 : kk);
for (k = kstart; (k < kk + step && k < N); k + +)
for (j = jj; (j < jj + step && j < N); j + +)

B[i][j]+ = A[i][k] ∗B[k][j];
}

C.4 SSYMM: Symmetric Matrix-Matrix Operation

Á. (We consider that all arrays are column-wise stored)

for (j = 0; j < N; j + +)
for (i = 0; i < N; i + +)}
for (k = 0; k < i; k + +){

C[k][j]+ = A[k][i] ∗B[i][j];
C[i][j]+ = A[k][i] ∗B[k][j];

}
C[i][j]+ = A[i][i] ∗B[i][j];

}

Â.

for (jj = 0; jj < N; jj+ = step)
for (ii = 0; ii < N; ii+ = step)
for (kk = 0; kk <= ii; kk+ = step)
for (j = jj; (j < jj + step && j < N); j + +)
for (i = ii; (i < ii + step && i < N); i + +){
for (k = kk; (k < kk + step && k < i); k + +){

C[k][j]+ = A[k][i] ∗B[i][j];
C[i][j]+ = A[k][i] ∗B[k][j];

}
if (ii == kk)

C[i][j]+ = A[i][i] ∗B[i][j];
}

118 Program Codes

C.5 SSYR2K: Symmetric Rank 2k Update

Á. (We consider that all array C is row-wise stored, while arrays A, B are column-
wise stored)

for (k = 0; k < N; k + +)
for (i = 0; i < N; i + +)
for (j = i; j < N; j + +)

C[i][j]+ = B[j][k] ∗A[i][k] + A[j][k] ∗B[i][k];

Â.

for (kk = 0; kk < N; kk+ = step)
for (ii = 0; ii < N; ii+ = step)
for (jj = ii; jj < N; jj+ = step)
for (k = kk; (k < kk + step && k < N); k + +)
for (i = ii; (i < ii + step && i < N); i + +){

jstart = (i > jj?i : jj);
for (j = jstart; (j < jj + step && j < N); j + +)

C[i][j]+ = B[j][k] ∗A[i][k] + A[j][k] ∗B[i][k];
}

Bibliography

[AAKK05] Evangelia Athanasaki, Nikos Anastopoulos, Kornilios Kourtis, and Nectarios
Koziris. Tuning Blocked Array Layouts to Exploit Memory Hierarchy in SMT
Architectures. In Proceedings of the 10th Panhellenic Conference in Informatics,
Volos, Greece, Nov. 2005.

[AAKK06a] Evangelia Athanasaki, Nikos Anastopoulos, Kornilios Kourtis, and Nectarios
Koziris. Exploring the Capacity of a Modern smt Architecture to Deliver High
Scienti�c Application Performance. In Proc. of the 2006 International Confer-
ence on High Performance Computing and Communications (HPCC-06), Munich,
Germany, Sep 2006. Lecture Notes in Computer Science.

[AAKK06b] Evangelia Athanasaki, Nikos Anastopoulos, Kornilios Kourtis, and Nectarios
Koziris. Exploring the Performance Limits of Simultaneous Multithreading for
Scienti�c Codes. In Proc. of the 2006 International Conference on Parallel Pro-
cesssing (ICPP-06), Columbus, Ohio, Aug 2006. IEEE Computer Society Press.

[AK03] Evangelia Athanasaki and Nectarios Koziris. Blocked Array Layouts for Multi-
level Memory Hierarchies. In Proceedings of the 9th Panhellenic Conference in
Informatics, pages 193{207, Thessaloniki, Greece, Nov. 2003.

[AK04a] Evangelia Athanasaki and Nectarios Koziris. Fast Indexing for Blocked Array
Layouts to Improve Multi-Level Cache Locality. In Proc. of the 8-th Workshop
on Interaction between Compilers and Computer Architectures (INTERACT-8), In
conjuction with the 10th International Symposium on High-Performance Computer
Architecture (HPCA-10), pages 109{119, Madrid, Spain, Feb 2004. IEEE Computer
Society Press.

[AK04b] Evangelia Athanasaki and Nectarios Koziris. Improving Cache Locality with
Blocked Array Layouts. In Proceedings of the 12-th Euromicro Conference on
Parallel, Distributed and Network based Processing (PDP'04), pages 308{317, A
Coruna, Spain, Feb. 2004. IEEE Computer Society Press.

120 BIBLIOGRAPHY

[AK05] Evangelia Athanasaki and Nectarios Koziris. Fast Indexing for Blocked Array Lay-
outs to Reduce Cache Misses. International Journal of High Performance Com-
puting and Networking (IJHPCN), 3(5/6):417{433, 2005.

[AKT05] Evangelia Athanasaki, Nectarios Koziris, and Panayiotis Tsanakas. A Tile Size
Selection Analysis for Blocked Array Layouts. In Proc. of the 9-th Workshop
on Interaction between Compilers and Computer Architectures (INTERACT-9),
In conjuction with the 11th International Symposium on High-Performance Com-
puter Architecture (HPCA-11), pages 70{80, San Francisco, CA, Feb 2005. IEEE
Computer Society Press.

[APD01] M. Annavaram, J. Patel, and E. Davidson. Data Prefetching by Dependence Graph
Precomputation. In Proceedings of the 28th Annual International Symposium on
Computer Architecture (ISCA '01), pages 52{61, G�oteborg, Sweden, July 2001.

[BAYT01] Abdel-Hameed A. Badawy, Aneesh Aggarwal, Donald Yeung, and Chau-Wen
Tseng. Evaluating the Impact of Memory System Performance on Software
Prefetching and Locality Optimizations. In Proc. of the 15th Int. Conf. on Su-
percomputing (ICS '01), pages 486{500, Sorrento, Italy, June 2001.

[BAYT04] Abdel-Hameed A. Badawy, Aneesh Aggarwal, Donald Yeung, and Chau-Wen
Tseng. The E�cacy of Software Prefetching and Locality Optimizations on Future
Memory Systems. The Journal of Instruction-Level Parallelism, 6:1{35, June 2004.

[BP04] James R. Bulpin and Ian A. Pratt. Multiprogramming Performance of the Pentium
4 with Hyper-Threading. In Proceedings of the Third Annual Workshop on Du-
plicating, Deconstructing and Debunking (WDDD 2004) held in conjunction with
ISCA �04, page 53�62, Munich, Germany, June 2004.

[CB94] T.-F. Chen and J.-L. Baer. A Performance Study of Software and Hardware Data
Prefetching Schemes. In Proceedings of the 21st Annual International Symposium
on Computer Architecture (ISCA '94), pages 223{232, Chicago, IL, Apr 1994.

[Che95] T. Chen. An E�ective Programmable Prefetch Engine for On-Chip Caches. In
Proceedings of the 28th Annual ACM/IEEE International Symposium on Microar-
chitecture (MICRO-28), pages 237{242, Ann Arbor, MI, Dec 1995.

[CJL+99] Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebeck, Shyam Mundhra, and
Mithuna Thottethodi. Nonlinear Array Layouts for Hierarchical Memory Systems.
In Proc. of the 13th ACM Int. Conf. on Supercomputing (ICS '99), pages 444{453,
Rhodes, Greece, June 1999.

[CL95] Michael Cierniak and Wei Li. Unifying Data and Control Transformations for
Distributed Shared-Memory Machines. In Proc. of the ACM SIGPLAN 1995 con-

BIBLIOGRAPHY 121

ference on Programming language design and implementation, pages 205{217, La
Jolla, CA, June 1995.

[CLPT99] Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala, and Mithuna Thot-
tethodi. Recursive Array Layouts and Fast Parallel Matrix Multiplication. In Proc.
of the 11th Annual Symp. on Parallel Algorithms and Architectures (SPAA '99),
pages 222{231, Saint Malo, France, June 1999.

[CM95] Stephanie Coleman and Kathryn S. McKinley. Tile Size Selection Using Cache
Organization and Data Layout. In Proc. of the ACM SIGPLAN 1995 Conference
on Programming Language Design and Implementation, pages 279{290, La Jolla,
CA, June 1995.

[CM99] Jacqueline Chame and Sungdo Moon. A Tile Selection Algorithm for Data Locality
and Cache Interference. In Proc. of the 13th ACM Int. Conf. on Supercomputing
(ICS '99), pages 492{499, Rhodes, Greece, June 1999.

[CTWS01] Jamison D. Collins, Dean M. Tullsen, Hong Wang, and John P. Shen. Dynamic
Speculative Precomputation. In Proceedings of the 34th Annual ACM/IEEE In-
ternational Symposium on Microarchitecture (MICRO-34), pages 306{317, Austin,
TX, Dec 2001.

[CWT+01] Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christopher Hughes, Yong-Fong
Lee, Dan Lavery, and John P. Shen. Speculative Precomputation: Long-Range
Prefetching of Delinquent Loads. In Proceedings of the 28th Annual International
Symposium on Computer Architecture (ISCA '01), pages 14{25, G�oteborg, Sweden,
July 2001.

[Ess93] K. Esseghir. Improving Data Locality for Caches. Master's thesis, Department of
Computer Science, Rice University, Houston, Texas, Sept 1993.

[FST91] Jeanne Ferrante, V Sarkar, and W Thrash. On Estimating and Enhancing Cache
E�ectiveness. In Proceedings of the 4th International Workshop on Languages and
Compilers for Parallel Computing, Aug 1991.

[GMM99] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache Miss Equations:
A Compiler Framework for Analyzing and Tuning Memory Behavior. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 21(4):703{746, July
1999.

[HK04] Chung-Hsing Hsu and Ulrich Kremer. A Quantitative Analysis of Tile Size Selec-
tion Algprithms. The Journal of Supercomputing, 27(3):279{294, Mar 2004.

122 BIBLIOGRAPHY

[HKN+92] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura, Y. Nakase,
and T. Nishizawa. An Elementary Processor Architecture with Simultaneous In-
struction Issuing from Multiple Threads. In Proceedings of the 19th Annual Inter-
national Symposium on Computer Architecture (ISCA '92), pages 136{145, Gold
Coast, Australia, May 1992.

[HKN99] John S. Harper, Darren J. Kerbyson, and Graham R. Nudd. Analytical Modeling
of Set-Associative Cache Behavior. IEEE Transactions Computers, 48(10):1009{
1024, Oct 1999.

[Int] Intel Corporation. IA-32 Intel Architecture Optimization Reference Manual. Order
Number: 248966-012.

[JG97] D. Joseph and D. Grunwald. Prefetching using Markov Predictors. In Proceedings
of the 24th Annual International Symposium on Computer Architecture (ISCA
'97), pages 252{263, Denver, CO, June 1997.

[Jim99] Marta Jimenez. Multilevel Tiling for Non-Rectangular Iteration Spaces. PhD thesis,
Universitat Politecnica de Catalunya, May 1999.

[Jou90] Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the Addi-
tion of a Small Fully-Associative Cache and Prefetch Bu�ers. In Proceedings of
the 27th Annual International Symposium on Computer Architecture (ISCA '90),
pages 364{373, Seattle, WA, May 1990.

[Kan01] Mahmut Taylan Kandemir. Array Uni�cation: A Locality Optimization Technique.
In Proc. of the 10th International Conference on Compiler Construction (CC'01),
pages 259{273, Genova, Italy, Apr 2001.

[KCS+99] M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J. Ramanujam. A Linear
Algebra Framework for Automatic Determination of Optimal Data Layouts. IEEE
Transactions on Parallel and Distributed Systems, 10(2):115{135, Feb 1999.

[KKO00] T. Kisuki, P.M.W. Knijnenburg, and M.F.P. O�Boyle. Combined Selection of
Tile Sizes and Unroll Factors Using Iterative Compilation. In Proc. of the 2000
International Conference on Parallel Architectures and Compilation Techniques
(PACT'00), pages 237{248, Philadelphia, Pennsylvania, Oct 2000.

[KLW+04] Dongkeun Kim, Shih-Wei Liao, Perry H. Wang, Juan del Cuvillo, Xinmin Tian, Xi-
ang Zou, Hong Wang, Donald Yeung, Milind Girkar, and John Paul Shen. Physical
experimentation with prefetching helper threads on intel's hyper-threaded proces-
sors. In Proceedings of the 2nd IEEE / ACM International Symposium on Code
Generation and Optimization (CGO 2004), pages 27{38, San Jose, CA, Mar 2004.

BIBLIOGRAPHY 123

[KPCM99] Induprakas Kodukula, Keshav Pingali, Robert Cox, and Dror Maydan. An Exper-
imental Evaluation of Tiling and Shackling for Memory Hierarchy Management.
In Proc. of the 13th ACM International Conference on Supercomputing (ICS '99),
pages 482{491, Rhodes, Greece, June 1999.

[KRC97] M. Kandemir, J. Ramanujam, and A. Choudhary. A Compiler Algorithm for
Optimizing Locality in Loop Nests. In Proc. of the 11th International Conference
on Supercomputing (ICS'97), pages 269{276, Vienna, Austria, July 1997.

[KRC99] M. Kandemir, J. Ramanujam, and Alok Choudhary. Improving Cache Locality
by a Combination of Loop and Data Transformations. IEEE Transactions on
Computers, 48(2):159{167, Feb 1999.

[KRCB01] M. Kandemir, J. Ramanujam, A. Choudhary, and P. Banerjee. A Layout-conscious
Iteration Space Transformation Technique. IEEE Transactions on Computers,
50(12):1321{1336, Dec 2001.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geo�
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
Customized Program Analysis Tools with Dynamic Instrumentation. SIGPLAN
Not., 40(6):190{200, 2005.

[LLC02] Chun-Yuan Lin, Jen-Shiuh Liu, and Yeh-Ching Chung. E�cient Representation
Scheme for Multidimensional Array Operations. IEEE Transactions on Computers,
51(03):327{345, Mar 2002.

[LM96] Chi-Keung Luk and Todd Mowry. Compiler-Based Prefetching for Recursive Data
Structures. In Proceedings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-VII), pages
222{233, Boston, MA, Oct 1996.

[LM99] Chi-Keung Luk and Todd Mowry. Automatic Compiler-Inserted Prefetching for
Poiner-based Applications. IEEE Transactions on Computers, 48(2):134{141, Feb
1999.

[LRW91] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The Cache Perfor-
mance and Optimizations of Blocked Algorithms. In Proc. of the 4th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 63{74, Santa Clara, CA, April 1991.

[Luk01] Chi-Keung Luk. Tolerating Memory Latency through Software-Controlled Pre-
Execution in Simultaneous Multithreading Processors. In Proceedings of the 28th
Annual International Symposium on Computer Architecture (ISCA '01), pages 40{
51, G�oteborg, Sweden, July 2001.

124 BIBLIOGRAPHY

[LW94] Alvin R. Lebeck and David A. Wood. Cache Pro�ling and the SPEC Benchmarks:
A Case Study. IEEE Computer, 27(10):15{26, Oct 1994.

[MCFT99] Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. ILP versus
TLP on SMT. In Proceedings of the 1999 ACM/IEEE conference on Supercomput-
ing (CDROM), Nov 1999.

[MCT96] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving Data Locality
with Loop Transformations. ACM Transactions on Programming Languages and
Systems (TOPLAS), 18(04):424{453, July 1996.

[MG91] Todd Mowry and Anoop Gupta. Tolerating Latency Trough Software-Controlled
Prefetching in Shared-Memory Multiprocessors. Journal of Parallel and Distributed
Computing, 12(2):87{106, June 1991.

[MHCF98] Nicholas Mitchell, Karin H�ogstedt, Larry Carter, and Jeanne Ferrante. Quantifying
the Multi-Level Nature of Tiling Interactions. International Journal of Parallel
Programming, 26(6):641{670, Dec 1998.

[MPB01] A. Moshovos, D. Pnevmatikatos, and A. Baniasadi. Slice Processors: an Imple-
mentation of Operation-Based Prediction. In Proceedings of the 15th International
Conference on Supercomputing (ICS '01), pages 321{334, Sorrento, Italy, June
2001.

[NS03] Nicholas Nethercote and Julian Seward. Valgrind: A Program Supervision Frame-
work. In Proceedings of the 3rd Workshop on Runtime Veri�cation (RV'03), Boul-
der, CO, July 2003.

[Ope03] Omni OpenMP Compiler Project. Released in the International Conference for
High Performance Computing, Networking and Storage (SC'03), Nov 2003.

[PHP02] Neungsoo Park, Bo Hong, and Viktor Prasanna. Analysis of Memory Hierarchy
Performance of Block Data Layout. In Proc. of the International Conference on
Parallel Processing (ICPP 2002), pages 35{44, Vancouver, Canada, Aug 2002.

[PHP03] Neungsoo Park, Bo Hong, and Viktor Prasanna. Tiling, Block Data Layout, and
Memory Hierarchy Performance. IEEE Transactions on Parallel and Distributed
Systems, 14(07):640{654, July 2003.

[PJ03] D. Patterson and J.Hennessy. Computer Architecture. A Quantitative Approach,
pages 373{504. Morgan Kaufmann Pub., San Francisco, CA, 3rd edition, 2003.

[PNDN99] Preeti Ranjan Panda, Hiroshi Nakamura, Nikil D. Dutt, and Alexandru Nicolau.
Augmenting Loop Tiling with Data Alignment for Improved Cache Performance.
IEEE Transactions on Computers, 48(2):142{149, Feb 1999.

BIBLIOGRAPHY 125

[RS01] A. Roth and G. Sohi. Speculative Data-Driven Multithreading. In Proceedings
of the 7th International Symposium on High Performance Computer Architecture
(HPCA '01), pages 37{48, Nuevo Leone, Mexico, Jan 2001.

[RT98a] Gabriel Rivera and Chau-Wen Tseng. Data Transformations for Eliminating Con-

ict Misses. In Proc. of the ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation (PLDI'98), pages 38{49, Montreal, Canada,
June 1998.

[RT98b] Gabriel Rivera and Chau-Wen Tseng. Eliminating Con
ict Misses for High Per-
formance Architectures. In Proc. of the 12th International Conference on Super-
computing (SC'98), pages 353{360, Melbourne, Australia, July 1998.

[RT99a] Gabriel Rivera and Chau-Wen Tseng. A Comparison of Compiler Tiling Algo-
rithms. In Proc. of the 8th International Conference on Compiler Construction
(CC'99), pages 168{182, Amsterdam, The Netherlands, March 1999.

[RT99b] Gabriel Rivera and Chau-Wen Tseng. Locality Optimizations for Multi-Level
Caches. In Proc. of the 1999 ACM/IEEE Conference on Supercomputing (SC'99),
CDROM article no. 2, Portland, OR, Nov 1999.

[SL99] Yonghong Song and Zhiyuan Li. New Tiling Techniques to Improve Cache Tem-
poral Locality. In Proc. of the ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation (PLDI'99), pages 215{228, Atlanta, Georgia,
May 1999.

[SL01] Yonghong Song and Zhiyuan Li. Impact of Tile-Size Selection for Skewed Tiling.
In Proc. of the 5-th Workshop on Interaction between Compilers and Architectures
(INTERACT'01), Monterrey, Mexico, Jan 2001.

[SPR00] Karthik Sundaramoorthy, Zachary Purser, and Eric Rotenberg. Slipstream Pro-
cessors: Improving both Performance and Fault Tolerance. In Proceedings of the
9th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS IX), pages 257{268, Cambridge, MA, Nov 2000.

[SU96] Ulrich Sigmund and Theo Ungerer. Identifying Bottlenecks in a Multithreaded Su-
perscalar Microprocessor. In Proceedings of the 2nd International Euro-Par Con-
ference on Parallel Processing-Volume II (Euro-Par '96), pages 797{800, Lyon,
France, Aug 1996.

[TEE+96] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm. Exploiting Choice:
Instruction Fetch and Issue on an Implementable Simultaneous Multithreading
Processor. In Proceedings of the 23rd Annual International Symposium on Com-
puter Architecture (ISCA '96), pages 191{202, Philadelphia, PA, May 1996.

126 BIBLIOGRAPHY

[TEL95] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multithreading: Maxi-
mizing On-Chip Parallelism. In Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture (ISCA '95), pages 392{403, Santa Margherita
Ligure, Italy, June 1995.

[TFJ94] O. Temam, C. Fricker, and W. Jalby. Cache Interference Phenomena. In Pro-
ceedings of the Sigmetrics Conference on Measurement and Modeling of Computer
Systems, pages 261{271, Nashville, Tennessee, May 1994.

[TGJ93] O. Temam, E. D. Granston, and W. Jalby. To Copy or Not to Copy: A Compile-
Time Technique for Assessing When Data Copying Should be Used to Eliminate
Cache Con
icts. In Proceedings of the 1993 ACM/IEEE Conference on Supercom-
puting (SC'93), pages 410{419, Portland, OR, Nov 1993.

[TT03] Nathan Tuck and Dean M. Tullsen. Initial Observations of the Simultaneous Multi-
threading Pentium 4 Processor. In Proceedings of the 12th International Conference
on Parallel Architectures and Compilation Techniques (PACT '03), New Orleans,
LA, Sep 2003.

[TWN04] Filip Blagojevic Tanping Wang and Dimitrios S. Nikolopoulos. Runtime Sup-
port for Integrating Precomputation and Thread-Level Parallelism on Simultane-
ous Multithreaded Processors. In Proceedings of the 7th ACM SIGPLAN Workshop
on Languages, Compilers, and Runtime Support for Scalable Systems (LCR'2004),
Houston, TX, Oct 2004.

[Ver03] Xavier Vera. Cache and Compiler Interaction (how to analyze, optimize and time
cache behaviour). PhD thesis, Malardalen University, Jan 2003.

[WAFG01] David S. Wise, Gregory A. Alexander, Jeremy D. Frens, and Yuhong Gu. Language
Support for Morton-order Matrices. In Proc. of the 2001 ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming (PPOPP'01), pages 24{33,
Snowbird, Utah, USA, June 2001.

[WF99] David S. Wise and Jeremy D. Frens. Morton-order Matrices Deserve Compilers'
Support. TR533, CS Dept., Indiana University, Nov 1999.

[Wis01] David S. Wise. Ahnentafel Indexing into Morton-ordered Arrays, or Matrix Lo-
cality for Free. In 1st Euro-Par 2000 Int. Workshop on Cluster Computing, pages
774{783, Munich, Germany, June 2001.

[WL91] Michael E. Wolf and Monica S. Lam. A Data Locality Optimizing Algorithm. In
Proc. of the ACM SIGPLAN '91 Conference on Programming Language Design
and Implementation, pages 30{44, Toronto, Ontario, Canada, June 1991.

BIBLIOGRAPHY 127

[WM95] Wm. A. Wulf and Sally A. McKee. Hitting the Memory Wall: Implications of the
Obvious. ACM SIGARCH Computer Architecture News, 23(1):20{24, 1995.

[WMC96] Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen. Combining Loop Trans-
formations Considering Caches and Scheduling. In Proc. of the 29th Annual
ACM/IEEE International Symposium on Microarchitecture, pages 274{286, Paris,
France, Dec 1996.

[WWW+02] H. Wang, P. Wang, R.D. Weldon, S.M. Ettinger, H. Saito, M. Girkar, S.S-W. Liao,
and J. Shen. Speculative Precomputation: Exploring the Use of Multithreading
for Latency. Intel Technology Journal, 6(1):22{35, Feb 2002.

[ZS01] C. Zilles and G. Sohi. Execution-Based Prediction Using Speculative Slices. In
Proceedings of the 28th Annual International Symposium on Computer Architecture
(ISCA '01), pages 2{13, G�oteborg, Sweden, July 2001.

